

Centre of Excellence for Low-Carbon Technologies

Alternative Energy Sources in the Energy Supply Mobile & Statinary Applications

Prof.Dr. Mihael Sekavčnik
Dr. Stanko Hočevar

About CoE LCT (CO NOT)

Name: Center odličnosti nizkoogljične tehnologije / Centre of Excellence for Low-

Carbon Technologies

Abbreviated name: CoE LCT

Address: Hajdrihova 19, 1000 Ljubljana Director: Prof. Miran Gaberšček, PhD Registration number: 3661431000

VAT ID. No.: SI13120468

Taxable person: yes

Telephone: 00386 (0)1 47 60 414

Fax: 00386 (0)1 47 60 422

Website: www.conot.si

E-mail: <u>info@conot.si</u> This e-mail address is being protected from spambots. You need JavaScript enabled to view it

Members of CoE LCT:

- 1. National Institute of Chemistry, Slovenia
- 2. The Jozef Stefan Institute
- 3. University of Ljubljana: Faculty of Chemistry and Chemical Technology; Faculty of Mechanical Engineering
- 4. University of Nova Gorica
- 5. Cinkarna Celje, d.d.
- 6. Domel d.o.o.
- 7. Holding Slovenske elektrarne d.o.o.
- 8. INEA d.o.o.
- 9. ISKRA SISTEMI d.d.
- 10. Mebius d.o.o.
- 11. Petrol d.d., Ljubljana
- 12. Development Centre for HydrogenTechnologies
- 13. Silkem d.o.o.
- 14. Powerplant Šoštanj d.o.o.

Research and development projects - topics

Solar energy - thermal power Electrochemical production of energy and electrochemical energy storage

Hydrogen Technologies

Environmental research

Project idea

- Increase the contribution of RES in future energy supply
- Disadvantages of RES systems:
 - not predictable availability,
 - uncoordinated with demand,
 - unreliable sources.
- Need for energy (electricity) storage systems
 - more efficient use of RES
 - more efficient utilization of fuels
 - improved reliability of system
 - various technologies
 - pumped storage HPP
 - hydrogen technologies
 - batteries & capacitors
 - flywheels

Demonstration project

simulation level

Demonstration project

simulation level

demonstration level

- grid balancing
- system efficiency reliability

Demonstration project

simulation level

demonstration level

- grid balancing
- system efficiency
- reliability

complementary levels:

- transport
- technical gases
- chemistry industry
- industry involved
 - > components
 - ingeneering
 - system control
 - service

Demonstration / testing unit

- electrolyzer and suporting equipment provided by thermal power plant Šoštanj
- new fuel cells electronic load system
- custom designed regulation software

Fuel cells: mobile, stationary and portable applications

Promising technology, but...

Main obstacles:

- high systems cost (core technology problems)
- economy of scale (production technology, marketing)
- ➤ lack of infrastructure (HFS, different fuels)
- low social acceptance (breakthrough technology)

Small stationary 1 – 50 kW

Portable ~10 W

Fuel cells core technology problems

Parameters and Processes Regulating PEMFC Functioning

Membranes

- Open challenges
- Area specific proton resistance $< 0.02 \Omega \text{ cm}^2$
- High conductivity (> 0.1 S/cm)
- High operating temperature (> 150 °C)
- Negligible H₂/O₂ crossover (2 mA/cm²)
- Water transfer flux at full flow 0.025 g/min cm²
- ... (DOE targets 2nd Q 2018)
- Current practice
- Low T Nafion: good conductivity $\sqrt{\ }$, need for high humidity >> max. $T_{\text{operating}} \approx 85 \, ^{\circ}\text{C}$ (higher T at higher p) $\sqrt{\ \times}$
- Polyphosphoric acid: high T (150 180 °C) √, no need for water √, leaching during on/off cycling X

New membranes invented at CoE LCT

New polymer nanocomposite membranes work in temperature interval with empty market niches!

Patent application: PCT/EP2014/070697

These HT membranes enable:

- ➤ use of both, H₂ and CO in any proportion of their concentrations as a fuel fed to anode,
- ➤ to reduce substantially anode and cathode reactions overpotential, enhance kinetics of the reactions at both electrodes,
- simplify and improve heat and water management, rendering it ideal for applications in CHP systems.

ionic conductivity 10⁻² - 10⁻³ S/cm at high T

Catalysts

- Open challenges
- Ultra low noble metal catalyst loading (< 0.05 mg_{pt}/cm²)
- High catalyst stability during potential cycling (> 50,000 cycles @ 0.6-1.0 V)
- Non-corrosive catalyst supports
- At least 4-times higher catalyst mass activity (> 0.44 A/mg_{Pt})
- Large scale catalyst production technology (1-100 kg)
- Low catalyst cost
- Catalyst should be non-pyrophoric
- Current practice
- Noble metal catalyst loading: $\sim 0.3 5 \text{ mg}_{Pt}/\text{cm}^2$
- Fast catalyst degradation during cycling (< 10,000 cycles @ 0.6-1.0 V)
- Corrosive carbon support
- Low mass activity (~ 0.15 A/mg_{Pt})

New catalyst invented at CoE LCT

Stack cost breakdown*

* @ 500,000 sys/year

Catalyst is the largest cost In present FC stacks!

COOL CENTER COLICNOSTI NIZXOOGLIACNE TEHNOLOGUE HAJDRIHOVA 19, 1000 LIJUBLIANA

Patent: US 9,147,885 B2, Oct 2015

Achievement:

5x higher mass activity
4x reduction of Pt loading
4x reduction of catalyst cost!

5x higher durability!

New catalysts performance vs. US DOE technical targets

demands

Technical Targets: Electrocatalysts for Transportation Applications				
Characteristic	Units	2015 3M	2015 NIC- Mebius	2017 DOE Targets
Platinum group metal total Content (both electrodes)	g/kW (rated)	0.154	0.124	0.125
Platinum group metal (PGM) total loading	Mg _{PGM} /cm ² _{geom}	0.133	0.070	0.125
Loss in initial catalytic activity	% mass activity loss	68	< 40	< 40
Electrocatalyst support stability	% mass activity Loss	< 10	< 10	< 10
Mass activity	A/mg _{Pt} @ 0.9 V _{iR-}	0.44	0.77	0.44
MEA performace @ 0.8 V	mA/cm ²	304	352	300
MEA performance @ Rated power	mW/cm²	855	1130	1,000

Designed and manufactured HT PEMFC portable system

Heat-integrated 24 W MSR - HT PEMFC system

Further plans: demo of 10 kW stationary CHP system

System -System overall efficiency: > 90 % Status Electrical efficiency: > 45 % System cost: 1.700.00 €/kW 2019 Operation: Grid parallel H/P ratio: 1.5 **Fuel processor** Natural gas, LPG, Methanol, DME Fuel: Components: MSR, WGS, Methanation Reformate composition: 78 % Hydrogen, < 0.5 % CO,< 2% CH4, 150 mbar (2,2 p)200 °C Hydrogen capacity: 4.0 Nm³/h Efficiency: 85 % Fuel cell Stack (HT PEMFC) Operating temperature: Electric output @ r.p.: 3.5 kWe Stack efficiency: 44 – 54 % Durability: > **60.000** h Availability: > 99 %

Thank you!

