

Nikola Tomasevic, PhD nikola.tomasevic@pupin.rs

EPIC-HUB

Energy Positive Neighbourhoods Infrastructure Middleware based on Energy-Hub Concept

EPIC-HUB Project

> Full name:

Energy Positive Neighbourhoods Infrastructure Middleware based on Energy-Hub Concept

Type of funding scheme:

FP7 (Collaborative Project (CP)

– Small or medium-scale focused research project (STREP))

Work programme topic addressed

EEB-ICT-2011.6.5 ICT for energy-positive neighbourhoods

Total budget:

6.7 MEur/Total funding 4.2 MEur

> Project !!

42 months

110111 0 17 10/2012 until 30/03/2016

- Project Consortium: 11 partners
 - 6 Industry / 2 SME / 3 Research from 6 countries
 - (Italy (4), Switzerland, Serbia, Spain, Czech Republic, Israel)

EPIC-HUB Objective

Objective

To develop a new methodology, an extended architecture and services able to provide improved Energy Performances to Neighbourhoods (NBH).

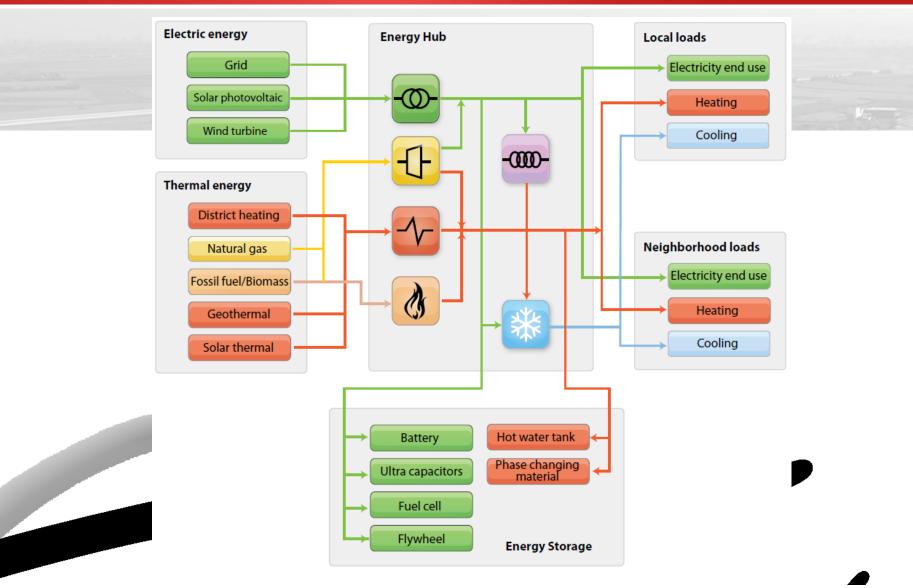
> How

 By combining powerful Energy-Hub (EH) based Energy Optimization capabilities with seamless integration of pre-existing and new ICT systems

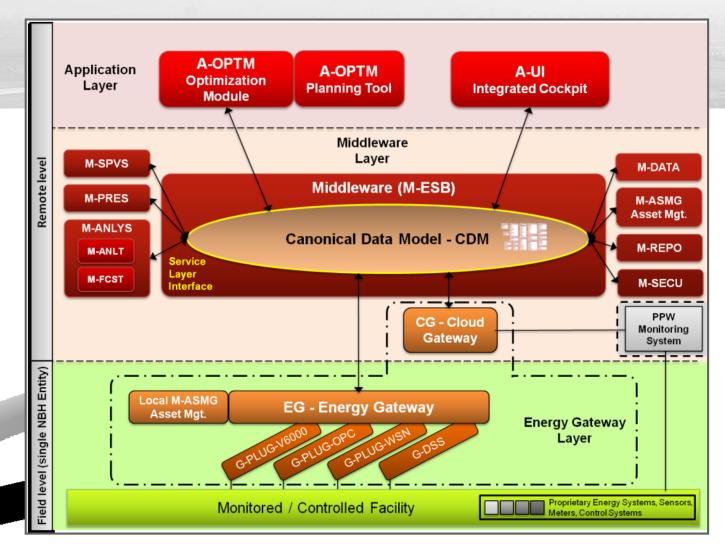
Pilots

Genoa Port

Nikola Tesla Airport



Bilbao Exhibition Centre



Energy Hub Concept

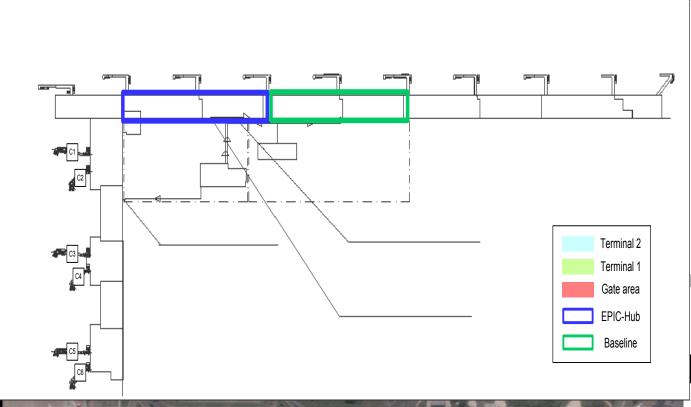
EPIC-HUB Solution

Nikola Tesla Airport

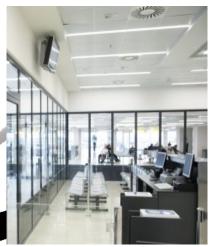
- Location: Serbia, Belgrade
- Key numbers: 4.8 million pax (2015)
- Responsible partner: Institute Mihajlo Pupin

Key figures (2015)

Aircraft Movements	No. passengers	Cargo (kg)	Mail (kg)
58,507	4,776,164	13,066,939	1,771,816


- > Total indoor area (T1, T2, Gates): 47,000 m2
- Yearly energy consumption
 - 33 GWh (both electrical and thermal energy)
- Energy assets
 - 4 boilers heating capacity 47.9 MW (18MW NTA demand -> NBH)
 - 7 chillers cooling capacity 2.3 MW
 - 20 rooftop units Qc 222 kW/ Qh 255 kW (auxiliary system!)

NTA Demonstration Plan


Specific target area

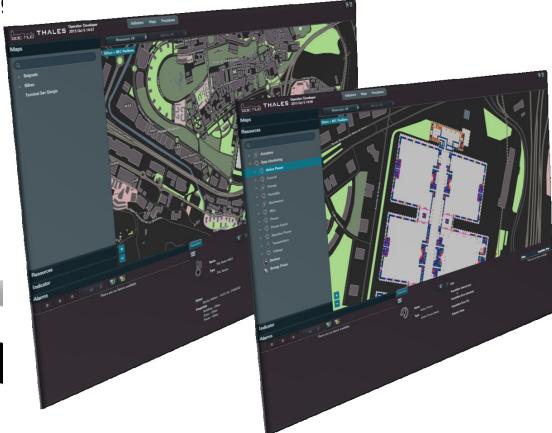
Multiple energy supply options -> allowing EH optimization

A4-A5 (B)

- Data acquisition and integration with EPIC-HUB Middleware
 - Main BMS SCADA View6000
 - Existing and missing energy monitoring
 - Electrical energy
 - Thermal energy

NBH Level Optimization

- Entities considered for the multi-Epic-Hub demonstration scenario:
 - 1) Aviation Museum,
 - 2) SMATSA,
 - 3) "JAT Tehnika".


EPIC-HUB Cockpit

> EPIC-HUB Integrated user interface

 Centralized, holistic monitoring of the energy data

- Detailed information about deployed monitoring points and energy assets
- Overview of the current, past and forecasted energy profiles

Operation optimization

Controlling the type of supplied energy carrier (electricity or hot water via roof-top supply carrier switch)

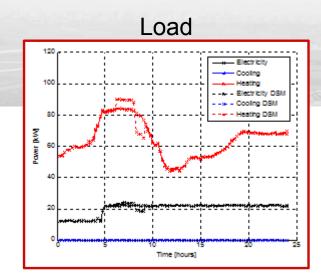
DSM measure

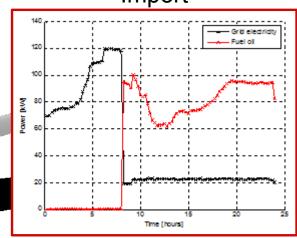
Optimal load profile suggested to the airport energy manager (energy carrier tariffs and contracted power peaks)

Planning optimization

 Optimal solution for introducing new energy assets based on EH approach (e.g. a CHP plant or PVPP)

Optimization at NBH level


Optimization of the energy flows among NTA and its NBH entities



EPIC-HUB Results

- Dynamic selection of thermal energy source
 - Estimated savings: 16.5% (only HVAC at NTA target area)
- High replication potential
 - Estimated savings for all T1+T2 gates:
 - 20 kEur/year (for heating only)
- Optimization leveraging on NBH energy assets
 - High" capae

Nikola Tomasevic, PhD nikola.tomasevic@pupin.rs

www.epichub.eu

THALES

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

