

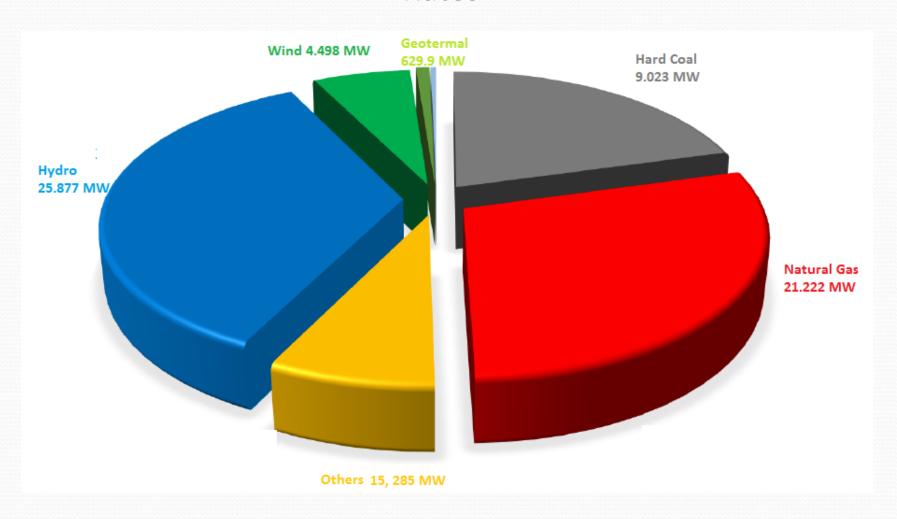
Wind Energy in Turkey and Cost Benefit Analysis of Wind Turbines in Smart Grid Systems

JRC Workshop, June 23-24, 2016, Bari/Italy

Outlines

- Developing Wind Energy in Turkey
- Some Statistics about wind energy
 - ➤ Installed Capacity, wind turbine brands
- Wind Turbine Components
- Cost Benefit Analysis of turbines
 - Comparison of different wind turbine models
 - Efficient operating lifetime
 - Capacity factors
- The adaption to Smart Grid

Introduction


- Global warming issue has led to discover the importance of renewable energy
- National and international policies support renewable energy
- Renewable plants unit cost of energy is higher than conventional plants. However, governments provide incentive & cost based tariff to support renewable
- Cost benefit analysis give an idea about the acceptability of any renewable energy plant

Total Installed Capacity in Turkey

Total installed capacity in Turkey is 73.147,6 MW (end of the year 2015)

- Hard coal 9.023 MW
- Imported coal 6.064 MW
- Natural gas 21.222 MW
- Fosil resources 4.326 MW
- Hydro 25.877 MW
- Wind 4.498 MW
- Geothermal 623,9 MW
- Solar 585 MW (under operation)

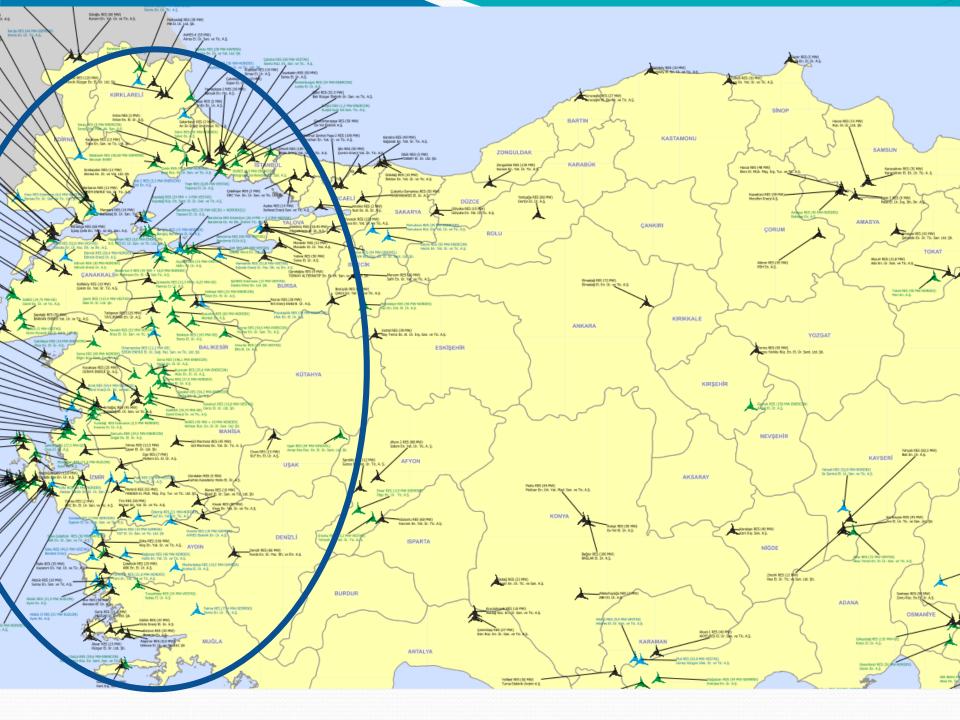
By the end of year 2015 Soruce Based Electricity Production Rates

1.Development of Wind Energy in Turkey

- Today, total installed capacity in Turkey is above
- **73.519 GW.** (coal, gas, renewables)
- Total wind power installed capacity represents only 6% of the total capacity, at just above 4.7 GW. The capacity under construction is 1.9 GW, waiting to join operation.
- Turkey is increasingly turning into renewable energy sources to improve its energy security, and seeking to provide 30% of its electricity from renewable energy including wind, solar and hydro power, by 2023.

Source: Turkish Wind Energy Association (TWEA)

1. Developing Wind Energy in Turkey


- Turkey's best wind resources are located in the provinces of Çanakkale, Izmir, Balıkesir, Hatay and Manisa.
- As of the end of 2013, the Aegean region had the highest installed wind capacity with a total of 1600 MW, followed by the Marmara region with 1517 MW and the Mediterranean region with 543 MW.
- One of the objectives set out in the 2009 Electric Energy Market and Supply Security Strategy Paper for Wind Energy is to reach a total installed capacity of 20GW by 2023.

Turkish Wind Power Plant Atlas(2014)

Turkish Wind Energy Association, has been publishing the Turkish Wind Power Plant Atlas of Turkey, twice every year. The update atlas is the 2015 year end version.

Turkish Wind Power Atlas 2015

1.2. Supports for Wind Energy

- Turkey's Renewable Energy Law (No. 5346 dated 18th May 2005) was amended in December 2010 and the notification was issued on 8th January 2011.
- After the amendment of the law the feed-in tariff was set at USD 7.3 cent/kWh (EUR 5.4 cent) for wind power, for a period of ten years and will apply to power plants that come into operation before 1st January 2016.
- In 2014, 11.65 percent increase in wind production enabled Turkey to pay \$850 million less for natural gas, while Turkey uses almost half of its natural gas imports for power generation.

1.3.Outlook For 2015 And Beyond

- The Turkish Wind Energy Association expects the market to reach an installed capacity of 5,000 MW by the end of 2015.
- Turkey's National Transmission Company expects annual installations to reach 1,000 MW per year from 2014 onwards
- Presently, Turkey is one of the biggest on-shore wind markets in Europe with an 11 GW pipeline of wind power projects, and it could be as high as 20 GW in the following ten years.

Source: Turkish Wind Power Association (TUREB)

2. Wind Power Plants Under Operation

NORDEX

VESTAS

NORDEX

ENERCON

NORDEX

ENERCON

ENERCON

ENERCON

NORDEX

VESTAS

ENERCON

ENERCON

SIEMENS

ENERCON

SIEMENS

NORDEX

NORDEX

NORDEX

ENERCON

GE

GE

GE

GE

GE

NORDEX

ENERCON

VESTAS

VESTAS

VESTAS

VESTAS

GE

ENERCON

N90

N90

E-40

N100

E-44

N100

E-82

E-40

V90-3.0

SWT-3.0-101

SWT-2.3-108

E-48/E-44

GE2.5-100

GEZ.75-103

GE2.5-100

GE2.5-100

GE2.75-100

N100

V112-3.3

E-48/E-82

V100-2.0

V80-2.0

V80-2.0

GE2.5-100

E-82

N100

N90

N90

E-82

E-48/E-44

E-82/E-48

V90-3.0

2,5 MW

3 MW

2,5 MW

0.6 MW

2,5 MW

0,9NW

2,5 MW

3 MW

2 MW

0.5 MW

3,0 MW

2,3 MW

2.5 MW

2.5 MW

2,5 MW

2,5 MW

2.75 MW

2.5 MW

2.5 MW

2.75 MW

2,5 MW

3,3 MW

2,0 MW

2,0 MW

2,0 MW

2.5 MW

2MW/3MW

0,8 MW/2,3 MW

2MW/3MW

WM9,0\WM8,0

WMP,0\WM8,0

2MW/0,8MW

2012

2008

2007

2000

2012

2014

2007

2009

2008

2010

1998

2011

2008

2013

2009/2010/2012/2013

2013

2008

2014

2014

2009/2010

2012

2014

2014

2007/2014

2014

2013

2014

2013

2012

2013/2014

2013/2014

2009/2010/2012

COMPANY NAME	PROJECT NAME	INSTALLED CAPACITY (MW)	CITY	TURBINE MANUFACTURERS	TURBINE MODEL	TURBINE POWER:
Ayen En. A.Ş.	Akbük RES	31,50	Aydın	SUZLON	5 88	2,1 MW
Akhisar Rüz, En. El. Ür. Sanultd. Şti.	AKRES	45,00	Manisa	NORDEX	N90	2,5 MW
Aksu Temiz En. El. Ür. San. ve Tic. A.Ş.	Aksu RES	72,00	Kayseri	VESTAS	V100-2.0	2 MW
Tan Elektrik Ür. A.Ş.	Aliaga RES	9,60	İzmir	NORDEX	N117	2,4 MW
Baktepe En. A.Ş.	Amasya RES	40,00	Amasya	NORDEX	N100	2,5 MW
Ares Alaçatı Rüz, En. San. Tic., A.Ş.	ARES	7,20	lamir	VESTAS	V44-600	600 KW
Aksa Enerji Ür. A.Ş.	Atik Belen RES	18,00	Hatay	GAMESA	G90	2.0MW
Ayres Ayvack El. Ür. Sant. Ltd. Şti.	AyRES	5,00	Çanakkale	VESTAS	V90-1.8	1.8MW
AkEn. El. Ür. A.Ş.	Ayyıldız RES	15,00	Balikesir	VESTAS	V90-3.0	3 MW
Borusan EnBW	Balabanlı RES	50,60	Tekirdağ.	SIEMENS	SWT-2.3-108	2,3 MW
Bares El. Ür. A.Ş.	Balikesir RES	143,00	Balikesir	GE	GE2.75-103	2.75 MW
Yapısan El. Ür. A.Ş.	Bandirma RES	30,00	Balikesir	GE	GE1.5se	1.5 MW
Borasco En, Ve Kim, San, Tic. A.Ş.	Bandima RES	60,00	Balikesir	VESTAS	V90-3.0	3 IVIW
Bandirma En. ve El. Ür. Tic. AŞ.	Bandirma RES Ext - 1	26,40	Balikesir	VESTAS	V112-3.3	3,3 MW
Yapısan EL Ür. A.Ş.	Bandirma RES Ext.	5,00	Balikesir	NORDEX	N90	2,5MW

Baltkesir

Canakkale

Hatav

Izmir

lzmir

Istanbul

Çanakkale

Canakkale

İstanbul

Istanbul

Balikesin

Izmir

Mersin

Muğla

Afyon

lamir

Edime

Manisa

Kırşehir

Manisa

Osmaniye

Balikesir

Balikesir

Afyon

Sivas

Balikesir

Balikesir

Izmir

Izmir

Osmaniye

Çanakkale

Balikesin

25,00

48,00

90,00

10,20

12,50

0,90

14,90

20,80

47,50

60,00

16,00

1,50

39,00

29,60

115,00

51,50

30,00

15,00

27,50

150,00

35,75

135,00

12,50

8,25

50,00

13,20

35,00

44,00

24,00

4,00

120,00

10.00

Bandima-3 RES

Belen RES

Bergama RES

Bozcaada RES

Bozyaka RES

Burgag RES

Canta RES

Çataka RES

Çeşme RES

Dinar RES

Düzova RES

Edincik RES

Geycek RES

Gökçedağ RES

Günaydın RES

Hasanbeyli RES

Incesu RES

Intepe RES

Kangal RES

Kapidağ RES

Kapidağ RES

Karadağ RES

Karaburun RES

Günaydın RES Ext.

Enez RES

GERES

GokRES

Cataltepe RES

Dağpazan RES

Dares Datça RES

Carnseki RES

BURES

As Makinsan En. El. Ür. San.Tic. A.S.

Bores Bozcaada Rüz, En, San, Tic. A.Ş.

Kardemir Haddecilik San.Tic. Ltd.Sti.

BORA Rüz. El. Ür. San. ve Tic. A.Ş.

Sanko Rüz, En. San. ve Tic. A.S.

Integreen Venilenebilir Enerji Sistemleri A.Ş.

Dares Datca Rüz, En. Sant, San, ve Tic. A.S.

Belen El. Ur. A.S.

Bergama RES En. Ur. A.S.

Dollal En. El. Ur. A.S.

Alize En. El. Ur. A.S.

Alize En. El. Ur. A.S.

Alize En, El, Or, A.S.

Enerjisa En. Ur. A.Ş.

Olgu En. Ur. Tic. A.Ş.

Utopya En. Ur. San. Tic. A.Ş.

Boreas En. Ür. San. ve Tic. Ltd. Şti.

"Edincik Enerji El. Ür. A.Ş."

Geres Enerji Ür. Tic. A.Ş.

Garet En. Ur. ve Tic. A.Ş.

Al-Vol El. Ur. A.S.

Rotor El. Ur. A.Ş.

Manres El. Ür. A.S.

Manres El. Ur. A.Ş.

Lodos El. Ur. A.Ş.

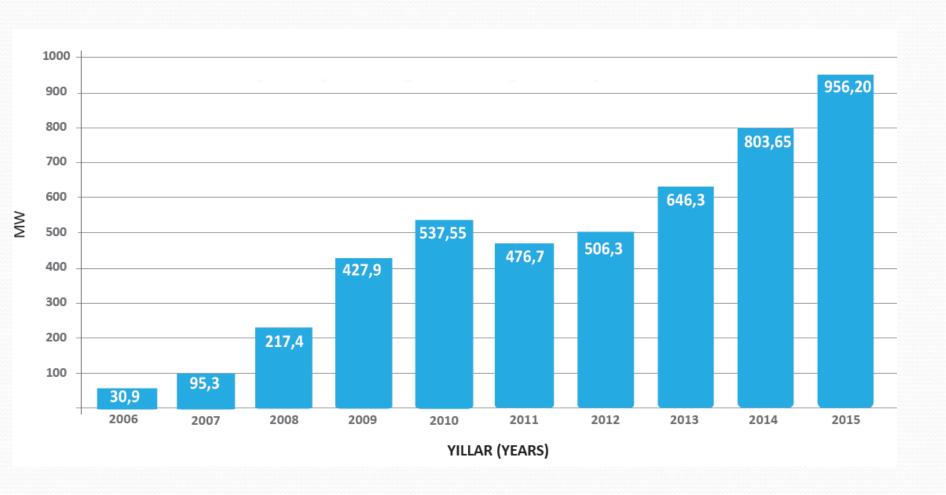
Eksim Enerji Ur. A.Ş.

Tamyel Enerji Üretim A.Ş.

Kangal Elektrik Üretim A.Ş.

Kapıdağ Rüz, En, Sant, El, Ür, San, ve Tic, A.Ş.

Kapıdağ Rüz, En. Sant. El. Ür. San. Tic. A.Ş.

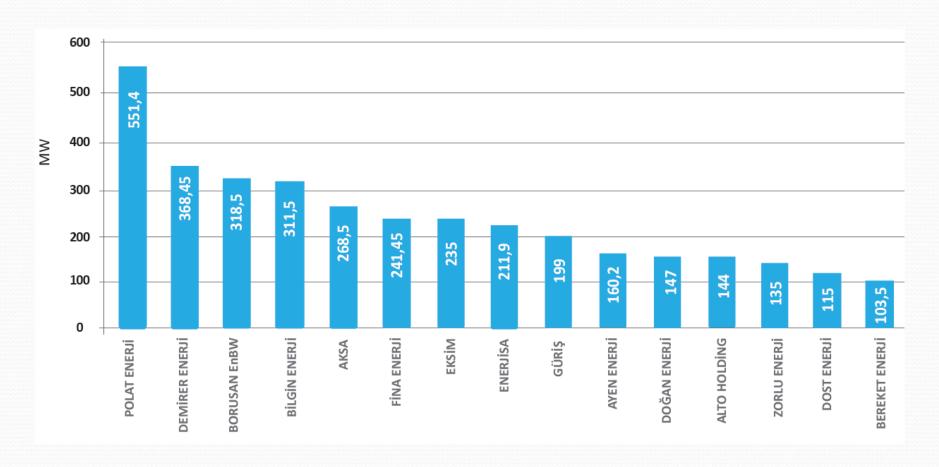

Anemon En. El. Ur. A.Ş.

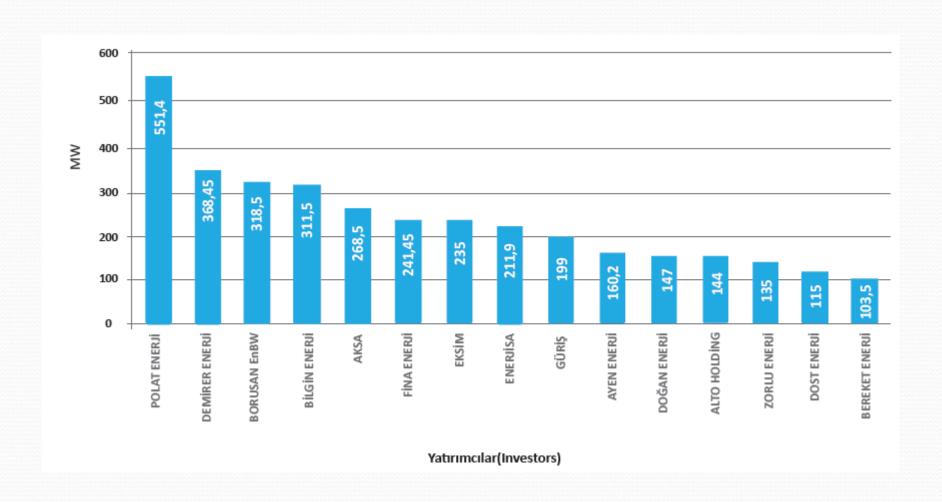
Garet En. Or. ve Tic. A.S.

COMPANY NAME	PROJECT NAME	INSTALLED CAPACITY (MIW)	CITY	TURBINE MANUFACTURERS	TURBINE MODEL	TURBINE POWER	COMMERCEMENT OF OPERATION
Aysu En, San, ve Tic, A.S.	Karadere RES	16,00	Kirklareli	GE	GE1.6-100	1.6 MW	2014
Deniz El. Ür. Ltd. Şti.	Karakurt RES	10,80	Manisa	VESTAS	V90-1.8	1.8 MW	2007
Briza EL Ür. A.Ş.	Kavaklı RES	52,00	Balikesir	VESTAS	V112-3.3	3,3 MW	2014
Alize En. El. Ür. A.Ş.	Keltepe RES	23,00	Balikesir	ENERCON	E-44/E-70	0,9 MW/2,3 MW	2009/2014
Lodos El. Ür. A.Ş.	Kernerburgaz RES	24,00	İstanbul	ENERCON	E-82	2 MW	2008
Alenka Enerji Ür. ve Yat. Ltd. Şti.	Krynköy RES	28,00	Kirklareli	GAMESA	G90/G97	2.0 MW	2014
Kores Kocadağ Rüz, En. Sant. Ür. A.Ş.	KORES	17,50	ternir	NORDEX	N90	2,5 MW	2012
Ayen En. A.Ş.	Korkmaz RES	25,20	temir	SUZLON	588	2,5 MW	2014
Doğal En. El. Ür. A.Ş.	Kozbeyli RES	32,20	temir	ENERCON	E-70	2,3 MW	2012/2013
Alize En. El. Ür. A.Ş.	Kuyucak RES	25,60	Manisa	ENERCON	E-70/E-44	2IV/W/0,9IV/W	2010
Kiroba El. Ür. A.Ş.	Madranbaba RES	19,50	Aydın	GAIVIESA	G90	2,0 MW	2013
Enerjisa En. Ür. A.Ş.	Mahmudiye RES	29,90	Çanakkale	SIEMENS	SWT-2.3-101	2,3 MW	2010
Mare Manastir Rüz, En, San, Tic, A.Ş.	Mare Manastir RES	39,20	temir	ENERCON	E-48/E-44	WM9,0\WM8,0	2006/2007
Mazı-3 Rüz, En. Sant, El. Ür. A.S.	Mazi-3 RES	30,00	tamir	NORDEX	N90	2,5 MW	2011
Akdeniz El, Ür. A.Ş.	Mersin Mut Extension	9,00	Mersin	VESTAS	V90-3.0	3,0 MW	2013
Akdeniz El, Ür, A.Ş.	Mersin Mut RES	33,00	Mersin	VESTAS	V90-3.0	3 MW	2010
Can Enerji Errt. El. Ür. A.Ş.	Metristepe RES	40,00	Bilecik	NORDEX	N100	2,5 MW	2011
Ayen En. A.S.	Mordoğan RES	31,50	temir	SUZLON	588	2,1 MW	2014
R.K. RES El. Ür. San. ve Tic. Ltd. Şti.	Paşalimanı RES	0,80	Balikesir	ENERCON	E-53	0,8MW	2013
Pitane Elektrik Ür. Ltd. Şti.	Pitane RES	4,80	tamir	NORDEX	N117	2,4 MW	2014
Poyraz En. El. Ür. A.S.	Poyraz RES	54,90	Balikesir	ENERCON	E-82	2IVIW	2012/2013
Öres El. Ür. A.S.	Salman RES	27,50	temir	GE	GE2.75-100	2.75 MW	2014
Doğal En. El. Ür. A.Ş.	Samurlu RES	34,50	lamir	ENERCON	E-70	2,3 MW	2012/2013
Saray Dök, Mad. Ak, San, Tic. A.S.	Saray RES	4,00	Tekirdağ	ENERCON	E-82	2IVW	2012
Garet En. Ür. ve Tic. A.S.	SaRES	24,75	Çanakkale	GE	GE2.75-100	2,75 MW	2010/2011
Alize En. El. Ür. A.Ş.	Sankaya RES	28,80	Tekirdağ	ENERCON	E-82/E-70/E-48	2MW/0,8MW	2009
Doğal En, El. Ür. A.S.	Sayalar RES	54,20	Manisa	ENERCON	E-82/E-70/E-44	2MW/0,9MW	2008/2013
Deniz El. Ür. Ltd. Şti.	Sebenoba RES	34,00	Hatay	VESTAS	V80-2.0	2 MW	2008
Eolos Rúz, En. Ür, A.S.	Senkoy RES	36,00	Hatay	ALSTOM	ECO100/ECO110	3 MW	2012/2013
Doruk En. Ür. San. Tic. A.Ş.	Seyitali RES	30,00	lamir	ENERCON	E-70	2 MW	2011
Silvri Enerji Ür. A.Ş.	Silivri RES	45,00	İstanbul	NORDEX	N100	2,5 MW	2014
Tektuğ El. Ür. A.Ş.	Sincik RES	27,50	Adiyaman	NORDEX	N100	2,5 MW	2013
Soma En. El. Ür. A.Ş.	Soma RES	196,10	Manisa	ENERCON	E-70/E-44	2MW/0,9MW	2011/2012/2014
Bilgin Rüz, Sant, En. Ür, A.Ş.	Soma RES	90,00	Manisa	NORDEX	N90	2,5 MW	2007
ABK En. Ür. San. ve Tic. A.Ş.	Söke-Çatalbük RES	30,00	Aydın	GAMESA	G90	2.0 MW	2010
Sunjūt Suni Jūt San. Tic. A.S.	Sunjút RES	1,20	İstanbul	ENERCON	E-40	0,6MW	2006
Alentek En. A.Ş.	Susurluk RES	60,00	Balkesir	NORDEX	N100/N90	2,5 MW	2012
Canres El. Ür. A.S.	Şadillı RES	38,50	Çanakkale	GE	GE2.75-100	2.75 MW	2014
Galata Wind En. Ltd. Sti.	SahRES	93,00	Balikesir	VESTAS	V90-3.0	3 MW	2011
Galata Wind En. Ltd. Şti.	SahRES Extension	12,00	Balikesir	VESTAS	V90-3.0	3,0 MW	2013
Baki El. Or. Ltd. Şti.	Şamlı RES	113,40	Balkesir	VESTAS	V90-3.0	3 MW	2008/2010
Yeni Belen Enerji Elektrik Üretim	Şenbük RES	27,00	Hatay	VESTAS	V112-3.0	3,0 MW	2013
Bakras Enerji Elektrik Ür, ve Tic. A.S.	Senbük RES	15,00	Hatay	VESTAS	V90-3.0	3 MW	2010
Bakras Enerji Elektrik Ür. ve Tic. A.Ş.	Senbük Res Extension	23,00	Hatay	VESTAS	V112-3.3	3,3 MW	2014
Teperes El. Ur. A.S.	TepeRES	0,85	Istanbul	VESTAS	V52-850	850 KW	2006
Pem En. A.Ş.	Tokat RES	40,00	Tokat	NORDEX	N100	2,5 MW	2010/2011
Sabaş El. Ür. A.Ş.	Turguttepe RES	24,00	Aydin	VESTAS	V90-2.0	2 MW	2010
Elfa Elektrik Üretim A.Ş.	Umurlar RES	10,00	Balikesir	VESTAS	V100-2.0	2,0 MW	2014
Amaz RES Rüzgar En. El. Ür.	Uşak RES	54,00	Uşak	SINOVEL	SL1500/90	1.5 MW	2014
Innores B. Ür. A.Ş.	Yuntdağ RES		lzmir		N90		
Innores B. Ur. A.Ş.		57,50	lzmir	NORDEX	N100	2,5 MW	2011
Zeytineli RES El. Ür. A.Ş.	Yuntdağ RES Ext. Zeytineli RES	2,50	temir	NORDEX NORDEX	N100/N90	2,5 MW	2014 2013
		50,00				2,5 MW	
Ziyaret RES El. Ür. San.Tic. A.Ş	Ziyaret RES	65,00	Hatay	GE	GE2.5-100	2.5 MW	2010/2011/2013
Ziyaret RES El. Ür. San.Tic. A.Ş	Ziyaret RES Ext.	11,00	Hatay	GE	GE2.75-100	2.75 MW	2014
		3.762,10					

2.1. Annual Installations for WPPs in Turkey(MW)

Source: Turkish Wind Energy Association, Turkey Wind Energy Statistics Report, January 2016

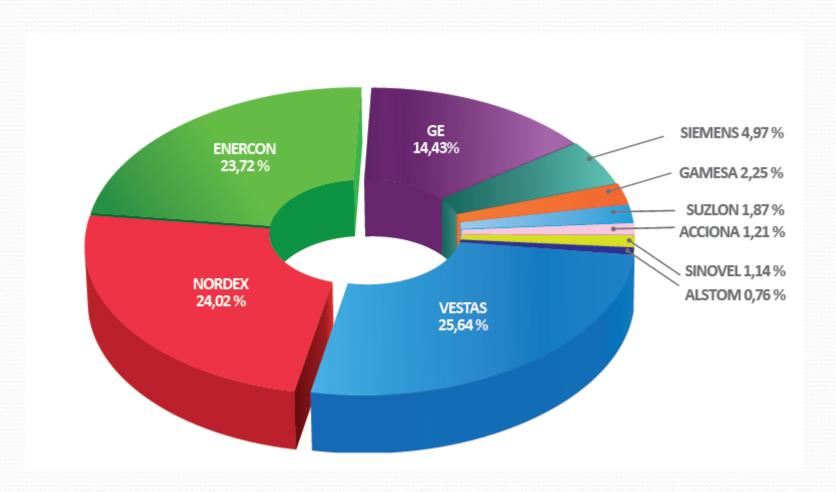

2.2.Cumulative Installations for WPPs in Turkey(MW)



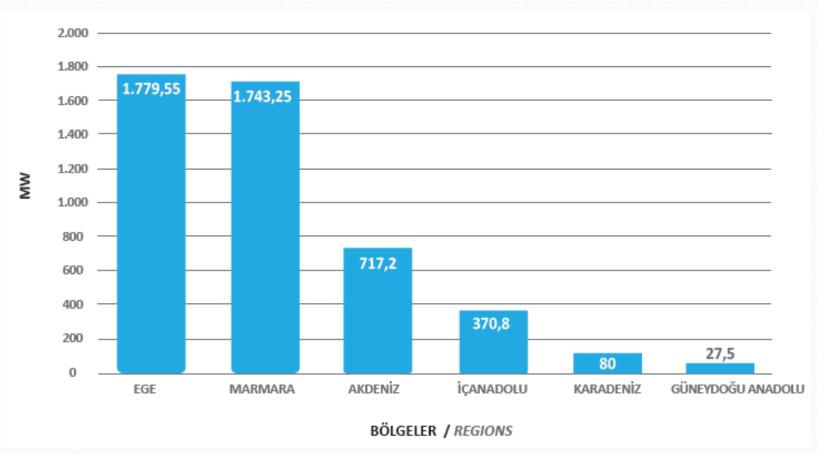
2.3.1.Investors According to Installed capacity for operational wind power plants(MW)



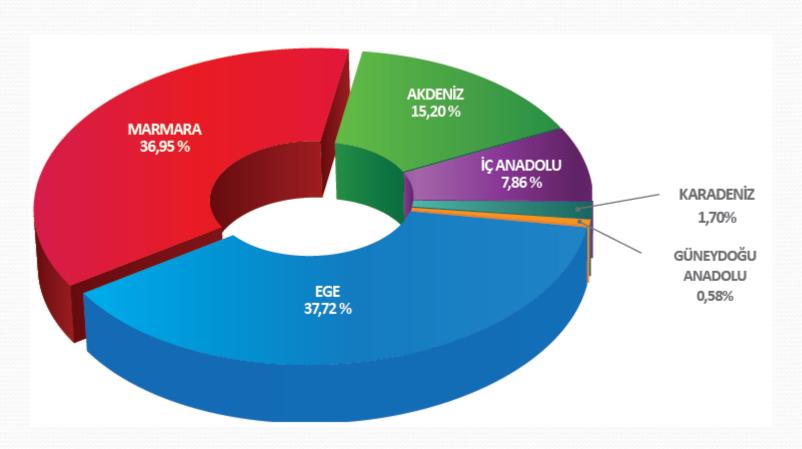
2.3.2.Investors According to operational wind power plants(%)



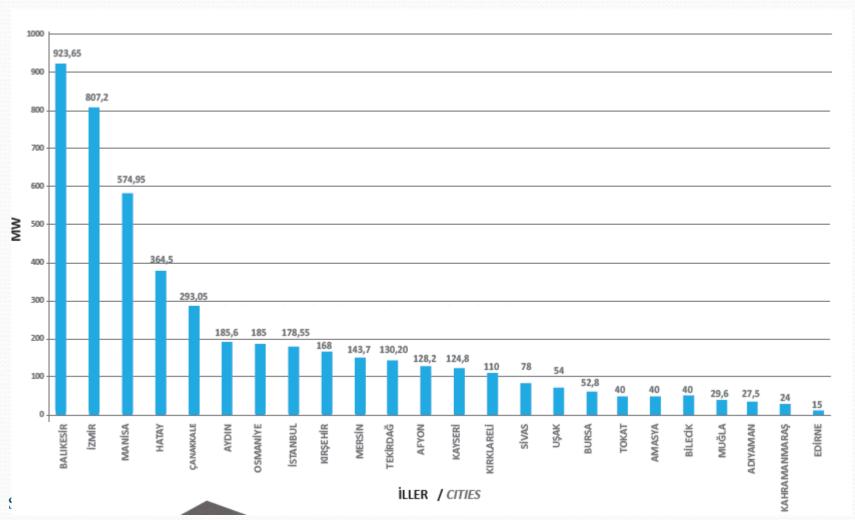
2.4.1.Turbine Manufacturers according to Installed Capacity for Operational WPPs(MW)



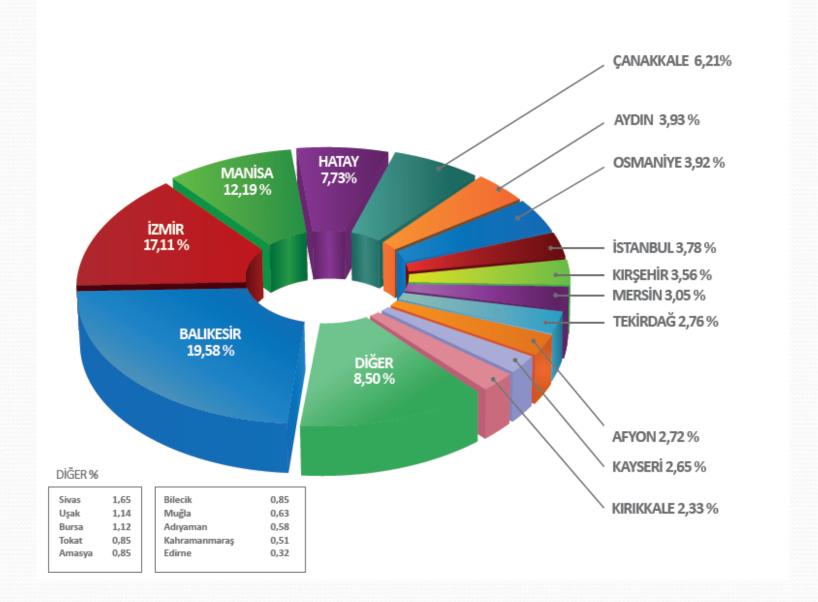
2.4.2.Turbine Manufacturers According to Operational WPPs (%)



2.5.1.Regions According to the Installed Capacity of Operational WPPs(MW)



2.5.2.Regions According to the Installed Capacity of Operational WPPs (%)



2.6.Cities According to Installed Capacity for Operational WPPs(MW)

Cities According to operational WPPs

3.WPPs Under Construction

2 MW

3,3 MW

3,3 MW

3,2 MW

3,4 MW

3,2 MW

2,5 MW

3,3 MW

3,3 MW

1,6 MW

2 MW

3 MW

3 MW

2,3 MW

3,0 MW

3,3 MW

3,3 MW

2,4 MW

1,5 MW

2,4 MW

3,0 MW

3 MW

2 MW/3 MW

3 MW

COMPANY NAME	PROJECT NAME	CAPACITY(MW)	CITY	TURBINE MANUFACTURERS	TURBINE MODEL	TURBINE POWER
YGT Elektrik Ür. San. ve Tic. Ltd. Şti.	AdaRES	10,00	İzmir	GAMESA	G97	2 MW
Ayen En. A.Ş.	Akbük II RES	21,00	Muğla	SUZLON	S95	2,5 MW
Akhisar Enerji Ür. A.Ş.	Akres Ext.	10,00	Manisa	NORDEX	N100	2,5 MW
Aksa Enerji Ür. A.Ş.	Atik Belen RES	12,00	Hatay	GAMESA	G90/G97	2 MW
Kütle Enerji Yat. Ür. ve Tic. A.Ş.	Bağarası RES	48,00	İzmir	NORDEX	N117	2,4 MW
Bandırma En. ve El. Ür. Tic. AŞ.	Bandırma RES Ext - 2	3,30	Balıkesir	VESTAS	V112-3.3	3,3 MW
As Makinsan En. El. Ür. San.Tic. A.Ş. B	Bandırma-3 RES Ext.	16,80	Balıkesir	NORDEX	N117/2400	2,4 MW
Kardemir Haddecilik San.Tic. Ltd.Şti.	Bozyaka RES Ext.	4,80	Ìzmir	NORDEX	N117/2400	2,4 MW
Z.T Enerji A.Ş.	Çerçikaya RES	57,00	Hatay	ACCIONA	AW125/3000	3 MW
ABK Çeşme Enerji	Çeşme RES	18,00	Ìzmir	NORDEX	N117	3 MW
Kale Enerji Üretim Tic. ve San. A.Ş.	Dilek RES	21,60	Kahramanmaraş	NORDEX	N117/2400	2,4 MW
"Edincik Enerji El. Ür. A.Ş."	Edincik RES Ext.	26,40	Balıkesir	NORDEX	N117	2,4 MW
BOREAS Enerji	Enez RES Ext.	6,60	Edirne	NORDEX	N100	3,3 MW
Derne En. Ür. Tic. A.Ş.	Fatma RES	77,40	Muğla	SIEMENS	SWT 3.0/3.2-113	3,2MW/3,0MW
FuatRES Elektrik Üretim A.Ş.	Fuat RES	33,00	İzmir	VESTAS	V112-3.3	3,3 MW

Sakarya

Bursa

Mersin

Edirne

İzmir

İzmir

İzmir

Tekirdağ

Çanakkale

Mersin

Aydin

Aydın

İzmir

Hatay

Aydın

İzmir

Kayseri

Yalova

Aydın

Kırklareli

Kırklareli

Sakarya

Balıkesir

Balıkesir

50,00

52,80

64,00

3,00

54,40

36,00

7,50

52,80

52,80

11,20

18,00

21,00

20,00

51,00

30,00

24,00

49,50

66,00

18,00

52,80

54,00

21,60

24,00

9,90

Hacim Enerji Yat. Ür. ve Tic. A.Ş.

Derne En. Ür. Tic. A.S.

Esinti En. Ür. Tic. A.S.

Serin En. El. Ür. A.S.

Ufuk En. El. Ür. A.Ş.

Deniz El. Ür. Ltd. Şti.

Arova RES Elektrik Ür.

Deme En. Ür. Tic. A.Ş.

Yeni Enerji Yat. Üretim Tic. A.Ş.

Bereket Enerji

Dost Enerji

Eskoda Enerji Ür. Paz. İth. İhr. A.Ş.

Hilalres Elektrik Üretim San. ve Tic. A.Ş.

Egener El. Ur. ve Mak. San. ve Tic. A.S.

Beşiktepe Enerji Üretim ve Tic. A.Ş.

Eskoda Enerji Ür. Paz. İth. İhr. A.Ş.

Güney Rüzgan El. Ür. Tic. Aş.

AYRES Elektrik Üretim A.Ş.

Tayf Enerji Yat. Üretim Tic. A.Ş.

Petkim Petrokimya Holding A.Ş.

Pamukova Rüz. En. Yat. Ür. ve Tic. A.S.

STEAG Rüzgar Süloğlu En.Ür. ve Tic.A.S.

Hassas Teknik Enerji El. Ür. San. Tic. A.Ş.

SE Santral Elektrik Üretim San. ve Tic. A.Ş.

Geyve RES

Hilal-2 RES

Kanije RES

Kınık RES

Koru RES

Mut RES

OvaRES

Ödemiş RES

Petkim RES

Söke RES

Urla RES

Süloğlu RES

Yahyalı RES

Yalova RES

Zeliha RES

Yenihisar RES

Pamukova RES

Poyrazgölü RES

Sebenoba RES Ext.

Kıyıköy RES

KORES Ext.-II

Ortamandira RES

Karabel RES

Harmanlık RES

PROJECT NAME	CAPACITY(MW)	CITY	TURBINE MANUFACTURERS	TURBINE MODEL	TURBINE
AdaRES	10,00	İzmir	GAMESA	G97	2 MW
Akbük II RES	21,00	Muğla	SUZLON	S95	2,5 MW
Akres Ext.	10,00	Manisa	NORDEX	N100	2,5 MW
Atik Bolon PES	12.00	Hatau	GAMESA	G90/G97	2 0/1/0/

ENERCON

VESTAS

VESTAS

SIEMENS

SENVION

SIEMENS

NORDEX

NORDEX

VESTAS

VESTAS

GAMESA

NORDEX

ENERCON

ALSTOM

ENERCON

VESTAS

VESTAS

VESTAS

NORDEX

NORDEX

SINOVEL

NORDEX

SIEMENS

GE

E82

V112-3.3

V112-3.3

3.4M104

SWT-3.2-113

SWT-3.2-108

N117/3000

N100/2500

V112-3.3

V112-3.3

G97

E82

ECO110

E70/E82

V112-3.0

V112-3.3

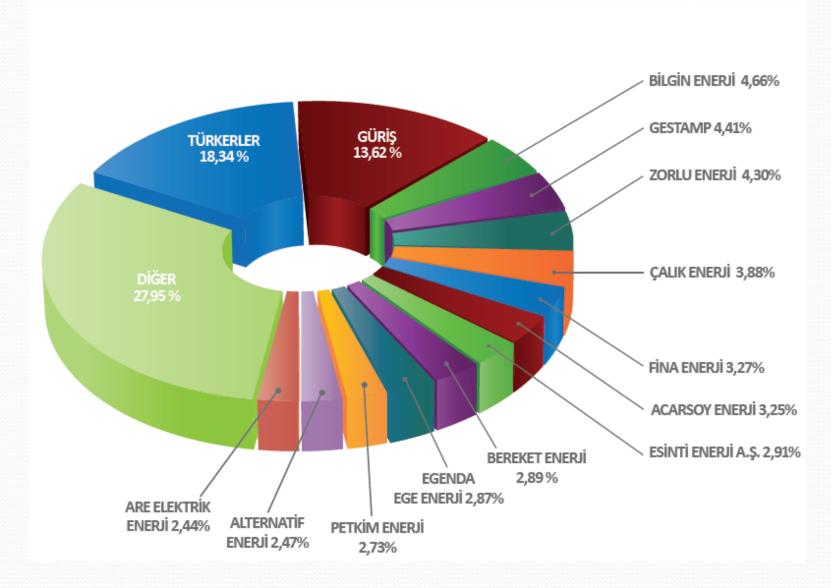
V126-3.3

N117/3000

N117/2400

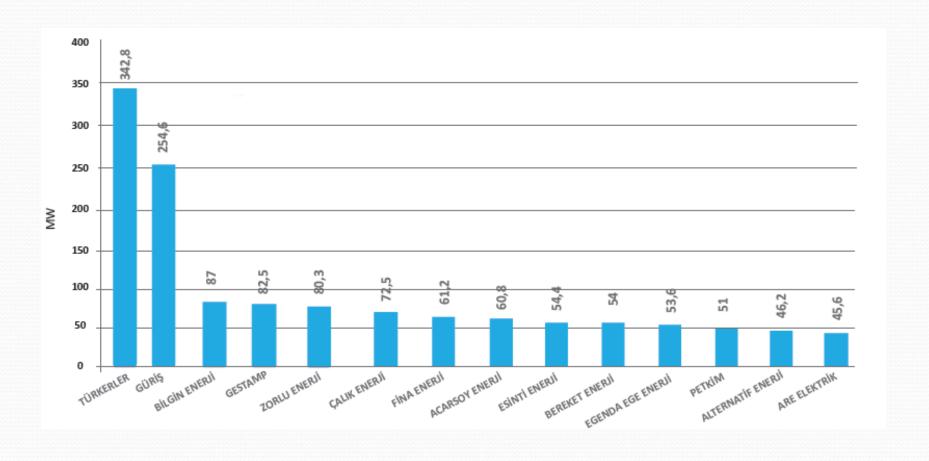
N117/2400

SWT-3.0-113

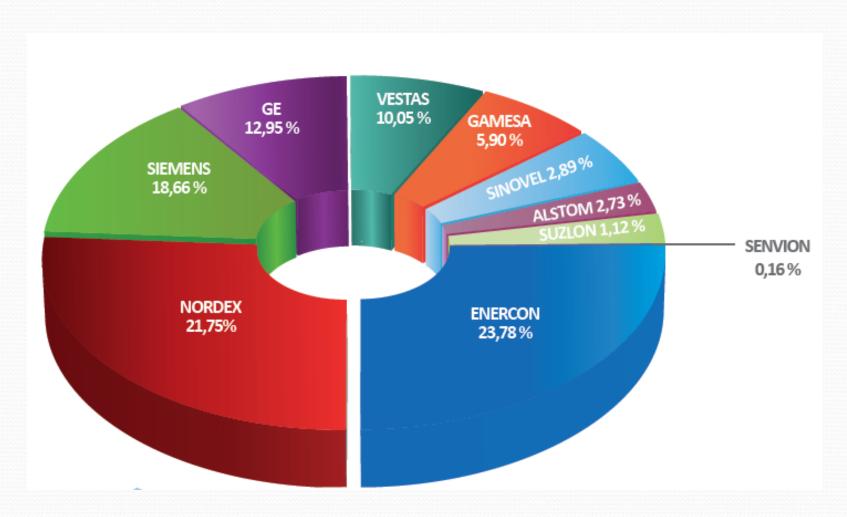

SL1500/90 SL1500/82

GE1.6-100

N117/3000

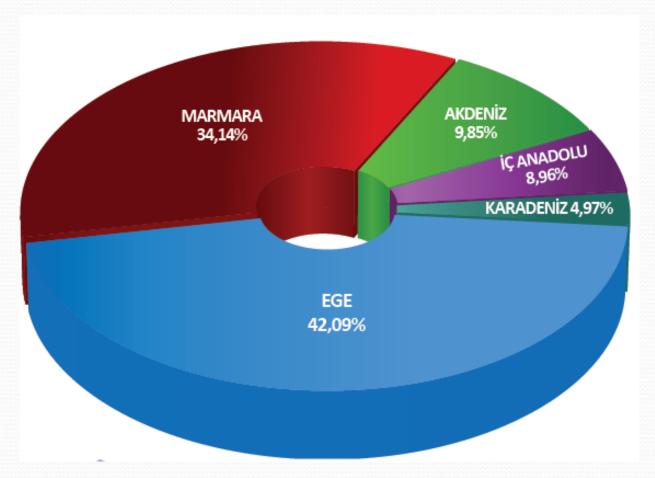

3.1.1.Investors According to capacity for WPPs GELİŞİM ÜNİVERSİTESİ

UnderConstruction (%)

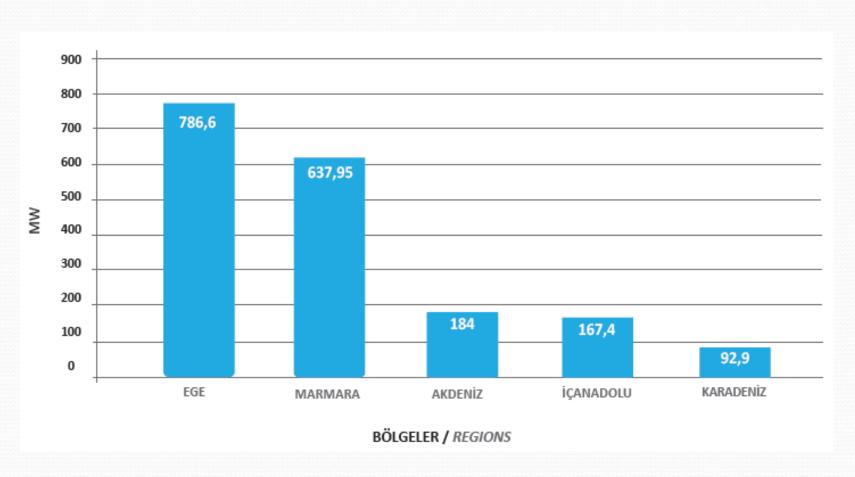




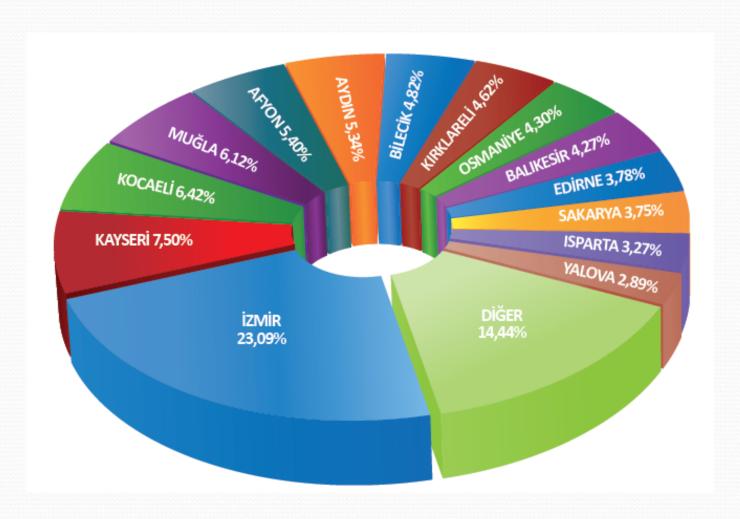
3.2.1.Turbine Manufacturers According to capacity for WPPs Under Construction (%)


Source: Turkish Wind Energy Association, Turkey Wind Energy Statistics Report, January 2016

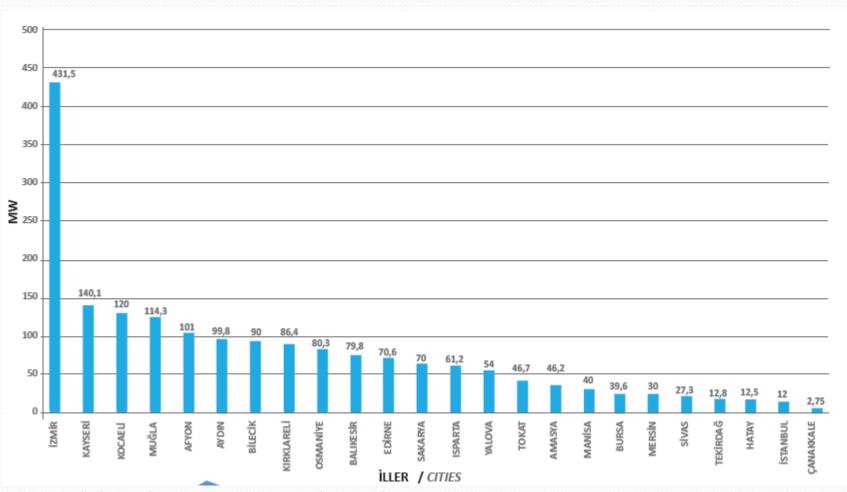
3.2.2. Turbine Manufacturers According to capacity for WPPs Under Construction (MW)



3.3.1.Regions According to the Installed Capacity for WPPs Under Construction(%)



3.3.2.Regions According to the Installed Capacity for WPPs Under Construction(MW)



3.4.1. Cities According to Capacity for WPPs Under Construction(%)

3.4.2. Cities According to Capacity for WPPs Under Construction(MW)

Source: Turkish Wind Energy Association, Turkey Wind Energy Statistics Report, January 2016

4.Classification of Wind Turbines in Turkey

The outcoming wind turbine manufacturers in Turkey are :

- ENERCON
 - SIEMENS
 - NORDEX
 - VESTAS

4.1.1.ENERCON PRODUCTS in TURKEY

Here, the mostly used wind turbine products of ENERCON series in Turkey have been classified and a comparison has been made out.

- The turbines mainly show difference for their;
- Rated power(kW),
- Rotor diameter(m),
- Rotational speed(rpm)
- Capacity factor(%)

Source: ENERCON

1.1.2.ENERCON Wind Turbines

Used in Turkey

The mostly used products of Enercon in Turkey are;

- E-44(900 KW)
- E-70(2300 KW)
- E-82(2000 KW)
- E-82(3000 KW)

Source: ENERCON

4.1.3.Comparison of Enercon Wind Turbines Used in Turkey

Annual wind energy yield of the mast measurements for different wind turbines of Enercon.

	E82	E101	E115
Rated power (kW)	3000	3050	2500
Rotor diameter (m)	82	101	115
Swept area (m ²)	5281	8012	10,387
Rotational speed (rpm)	6-18	4-14.5	3-12.8
Gross yield (MWh/year)	4662	6776	7460
Capacity factor (%)	17.6	25.4	34.1

Source: ENERCON

4.2.1. SIEMENS PRODUCTS IN TURKEY

Here, the mostly used wind turbine products of SIEMENS series in Turkey have been classified.

The mostly used products are;

- SWT-101/ 2.300KW
- SWT-108/2.300KW
- SWT-113/3.200KW

Source: SIEMENS

4.2.2.SIEMENS Wind Projects in Turkey

Project Name	Turbine Type	Number of WTG	Total Capacity	Scope	Status
Mahmudiye	SWT-2.3-101	13	29.9MW	WTG+E-BoP Supply	In operation
Dagpazari	SWT-3.0-101	13	39.0MW	WTG+E-BoP Supply	In operation
Dinar	SWT-2.3-108	22	50.6MW	WTG+E-BoP Supply	In operation
Dinar-2	SWT-2.3-108	12	27.6MW	WTG+E-BoP Supply	In operation
Balabanli	SWT-2.3-108	22	50.6MW	WTG+E-BoP Supply	In operation
Dinar-3	SWT-2.3-108	16	36.8MW	WTG+E-BoP Supply	In operation
Zeliha	SWT-3.0-113	8	24.0MW	WTG+E-BoP Supply	Sold/In execution
Kanije	SWT-3.2-113	20	64.0MW	WTG+E-BoP Supply	Sold/In execution
Fatma	SWT-3.0&3.2-113	25	77.4MW	WTG+E-BoP Supply	Sold/In execution
Kinik	SWT-3.2-108	17	54.4MW	WTG+E-BoP Supply	Sold/In execution
Bereketli	SWT-3.2-113	10	32.0MW	WTG	Sold/In execution

Source: SIEMENS

4.3.1.NORDEX PRODUCTS IN TURKEY

 Here, the mostly used wind turbine products of NORDEX series in Turkey have been classified.

The mostly used products are;

- N90/2500 KW
- N100/3300KW
- N117/3000KW

Source: NORDEX

A Case Study in Turkey

Source: NORDEX

Project name: Yuntdag

Owner: Innores Enerji Üretim Sanayi ve Ticaret A.S

Contractors: Innores Enerji Üretim Sanayi ve Ticaret A.S

Power utility: Teias

Installed capacity: 42,5 MW

Wind turbine type: N90/2500 kW high-speed

Tower height and type: 80 m, steel tube tower

Number of wind turbines: 17

Wind speed: 8,5 to 9,5 m/s

Site: The site is located in the West of Turkey,

some 18 kilometres South of Bergamo, the

ancient city of Pergamon.

Site description: The turbines stand in a relatively harsh

landscape which is only used a little for agricultural purposes and is sparsely populated. The nearest villages are Koyuneli (600 metres as the crow flies) and Yuntdag

(2.5 kilometres).

Wind turbine siting: The turbines were erected on two contour lines running in a North-South direction.

There are twelve turbines on the eastern side and five on the western side.

Building period: November to April 2008

Grid connection: February 2008

Extent of delivery: Nordex was responsible for supplying and installing the turbines.

Calculated annual power output: 160,000 MWh

Maintenance: Nordex Energy GmbH

Warranty period: 5 years

 Here, the mostly used wind turbine products of VESTAS series in Turkey have been classified.

The mostly used products are;

- V90/2000 KW
- V100/2000 KW
- V112/3300KW

Source: VESTAS

12.91%

4.5.1.Wind Turbine Components

How a wind turbine comes together

A typical wind turbine will contain up to 8000 different components. This guide shows the main parts and their contribution in percentage terms to the overall cost. Figures are based on a REpower MM92 turbine with 45.5 metre length blades and a 100 metre tower.

Tower

26.3%

Range in height from 40 metres up to more than 100 m. Usually manufactured in sections from rolled steet; a lattice structure or concrets are cheaper options.

Rotor blades

22.2%

Varying in length up to more than 60 metres, blades are manufactured in specially designed moulds from composite materisis, usually a combination of glass fibre and spoxy resin. Options include polyester instead of epoxy and the addition of carbon fibre to add strength and stiffness.

entor hub

1.5/9

Made from cast iron, the hub holds the blades in position as they turn.

Rotor bearings

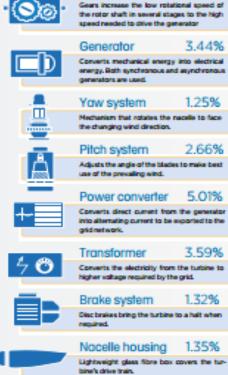
1.22%

Some of the many different bearings in a turbine, these have to withstand the varying forces and loads generated by the wind.

Main shaft

Q194

Transfers the rotational force of the rotor to the gearbox.


Main frame

2.80%

Made from steel, must be strong enough to support the entire turbine drive train, but not too heavy.

Screws

Hold the main components in place, must be

designed for extreme loads.

Gearbox

Source: Wind Directions, January/February 2007.

Cables

electricity sub-station.

Link individual turbines in a wind farm to an

4.5.2. Wind Turbine Components

- A 1.5 MW wind turbine of a has a tower 80 meters high.
- The rotor assembly (blades and hub) weighs 48,000 pounds (22,000 kg).
- The nacelle, which contains the generator component, weighs 115,000 pounds (52,000 kg).
- The concrete base for the tower is constructed using 58,000 pounds (26,000 kg) of reinforcing steel and contains 250 cubic yards of concrete.
- The base is 50 feet (15 m) in diameter and 8 feet (2.4 m) thick near the center.

4.6.CBA of Wind Turbines

- CBA applied to energy is the consideration of all the costs and benefits of an energy Project taking account of present and future work.
- CBA takes account of both financial and social analysis

4.6.CBA of Wind Turbines

There is mainly four ways of eveluating CBA;

- Benefit/Cost ratio
- Net present value(NPV)
- Internal rate of return (IRR)

Benefits/Cost Ratio

- As the name suggest, Benefit-cost ration method of analysis is based on the ratio of the benefits to cost associated with a particular project
- The basic need to calculate all the cost and benefit separately.
- B-C ratio method has frequently used by government agencies whose benefit are reaped by the public and cost are incurred by government
- Let B= Present Value of cash inflows (benefits)
 C=Present Value of cash outflows (costs)

$$B = \sum_{j=0}^{n} \frac{B_j}{(1+i)^j}$$

$$C = \sum_{j=0}^{n} \frac{C_j}{(1+i)^j}$$

Where i is the interest rate and j is the part of time period

- The equivalent present value cost C may consist two part:
 - 1. The initial capital expenditure C_o
 - 2. The annual cost accrued in each successive period C'
- Let for any project, there is initial m period for installation and ones the plant is ready to operate, there is fixed maintenance cost per year from m+1 period to life cycle of project (n).

$$C_o = \sum_{j=0}^m \frac{C_j}{(1+i)^j}$$

$$C' = \sum_{j=m+1}^{n} \frac{C_j}{(1+i)^j}$$

And
$$C = C_o + C'$$

Renewable Energy Parameters for C/B Analysis

- The type of parameter for C/B analysis is depend upon the type of renewable technology
- Here the list which affect the analysis of RET
 - Location of plant
 - 2. Type of renewable energy
 - 3. Technology status
 - 4. Government involvement
 - 5. Availability of technical staff
 - 6. Economical consideration of society
 - 7. Overall objective of installation
 - 8. Climate condition
 - Risk of natural disaster

Basic cost of wind energy

- Approximately 75% of the total cost of energy for a wind turbine is related to upfront costs such as
- the cost of the turbine,
- foundation,
- electrical equipment,
- grid-connection

Source: THE ECONOMICS OF WIND ENERGY EWEA

CBA parameters for Renewable Energy

 CBA parameter can be categories on the basis of cost inflow and outflow

Cost Outflow	Cost Inflow
 Capital cost of plant Annual maintenance cost Unwanted investment due to technology failure Extra investment due to change in incentive policy of govt. 	 Benefit by selling energy Social benefit by supplying electrical in rural area Carbon credit Commitment to ward green development High rate of return to support renewable energy (incentive from govt)

Implementation of CBA for wind Energy

- Cost of the system:
 - Land lease cost
 - 2. Turbine installation cost
 - 3. Electrical network up gradation cost
 - Cost of additional reserve requirement
 - Component life maintaining cost
 - Operating cost
- Benefits of the system
 - Capacity benefit
 - Carbon credit benefit
 - Fuel saving benefit
 - 4. Social empowerment benefit in remote area
 - 5. With proper design, multi function land utilization

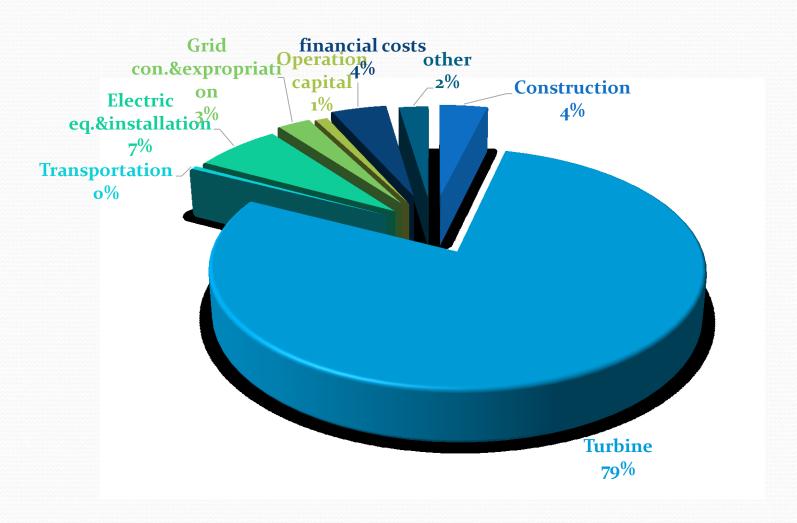
SOURCE:EWEA, of Wind Energy,2009 The Economics

4.6.1.A typical 2 MW Wind

Turbine Costs

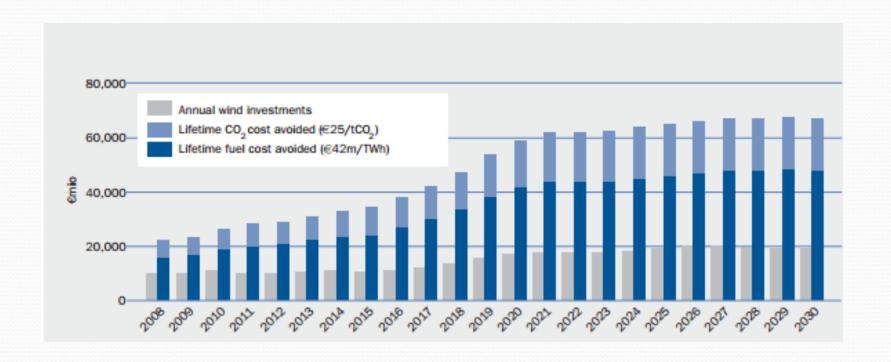
	INVESTMENT (€1,000/MW)	SHARE OF TOTAL COST %
Turbine (ex works)	928	75.6
Grid connection	109	8.9
Foundation	80	6.5
Land rent	48	3.9
Electric installation	18	1.5
Consultancy	15	1.2
Financial costs	15	1.2
Road construction	11	0.9
Control systems	4	0.3
TOTAL	1,227	100

Note: Calculated by the author based on selected data for European wind turbine installations


4.6.2.Case Study-55 MW Wind Project Costs (Turkey project)

55 MW Wind Project				
Transmission line length	20,7 km			
License Capacity	54,9 MW			
Turbine Rated Power	2 MW			
Turbine Type	Enercon E-82			
Hub Height	85 m			
Wind Class	Wind Class I			
Mean Wind Speed	7,8 m/s			
Gross Generation kWh	182.751.120,00			
Net Selleable Generation kWh	158.704.920,00			
Gross Capacity Factor	38,00 %			
Net Capacity Factor	33,00 %			
Project Cost without VAT VAT	€ 71.581.155,17 € 1.952.707,93			
Equity % 20	€ 15.033.863,10			
Loan % 80	€ 58.500.000,00			

A 55 MW Turbine costs in Turkey (€2011)


4.6.3. Outcomes of the Project

As the 55 MW wind Project is considered:

- the operation time **3000 hours** per year,
- the lifetime of the turbine is **30 years**,
- The power plant generates 155 million kWh of electricity per year
- meets the annual need of 77.500 people.
- Also it reduces **98.500 tons of emission** each year

4.6.4.Wind investments compared with life time avoided fuel and CO2 costs

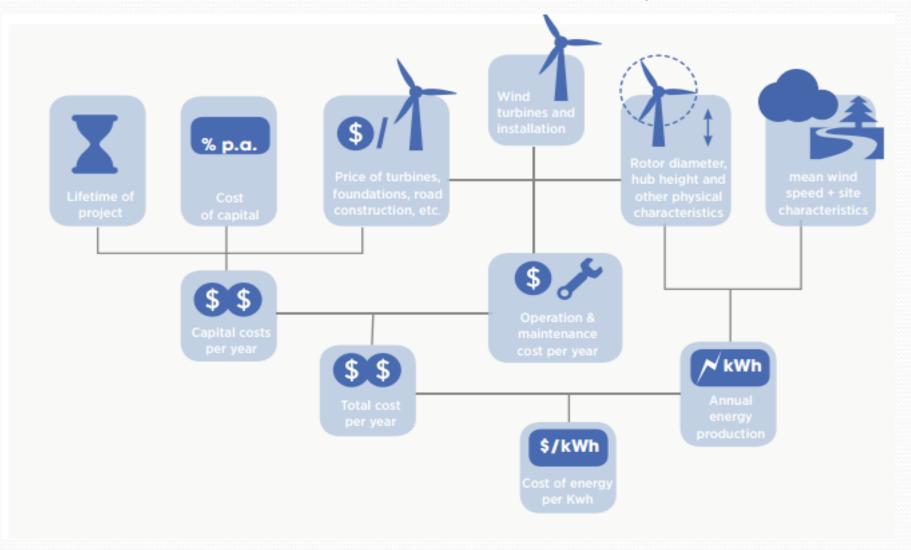
Source: THE ECONOMICS OF WIND ENERGY EWEA

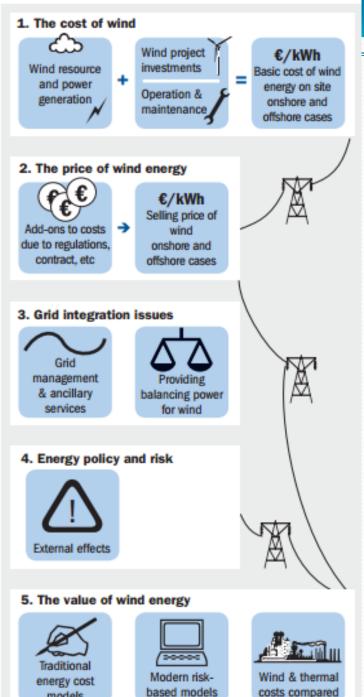
(Oil - \$90/barrel; CO2 - €25/t)

- Figure shows the total CO₂ costs and fuel costs avoided during the lifetime of the wind energy capacity installed for each of the years 2008-2030, assuming a technical lifetime for onshore wind turbines of 20 years and for offshore wind turbines of 25 years.
- Furthermore, it is assumed that wind energy avoids an average of 690g CO2/kWh produced; that the average price of a CO2 allowance is €25/t CO2 and that €42 million worth of fuel is avoided for each TWh of wind power produced, equivalent to an oil price throughout the period of \$90 per barrel.

4.7. Onshore vs Offshore Wind Energy Costs

- Onshore wind energy sticks out as being extremely important because it's one of the most costeffective and mature of all the renewable technologies.
- Although offshore wind is another great source of clean energy, it's not the best investment right now because of its very high costs, immature technologies and development constraints.


5. Comparison of Turbines


The wind turbines are compared due to the parameters;

- The produced power
- 2. Lifetime
- 3. O&M (Eurocent/kWh)
- 4. Capital cost (Euro/KW)
- 5. Interest rate (%)
- 6. Full hours (per year)
- **7.** Capacity Factor

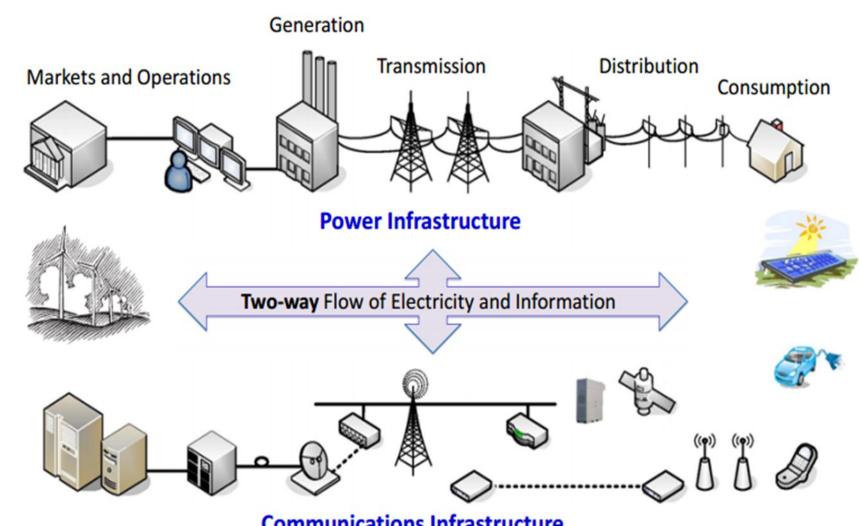
5.1. The economics of wind systems

Benefits of Wind Energy

- One of the most important economic benefits of wind power is that it reduces the exposure of our economies to fuel price volatility.
- Wind energy will have a large share in most European countries, even if wind were more expensive per kWh than other forms of power generation.
- In a situation where the industrialized world is becoming ever more dependent on importing fuel from politically unstable areas, this aspect merits immediate attention.

Advantages of Wind Power

- After installation, only cost is maintenance
- Wind is renewable
- Available everywhere to some extent
- No pollution
- Simple designs
- Supply of wind energy cannot be controlled by anyone (no political maneuvering)
- Wind farms make it profitable


Disadvantages of Wind Power

- Expensive to set up, custom products
- Wind speed varies a lot
 - Hard to predict
 - Not steady, so unreliable
 - Accurate data absolutely necessary
- Environmental impact from manufacturing
- Turbines can require large areas of land

What is Smart Grid?

Future Smart Grid:

Communications Infrastructure

6.1.The Cost Benefit Analysis in Smart Grid Systems

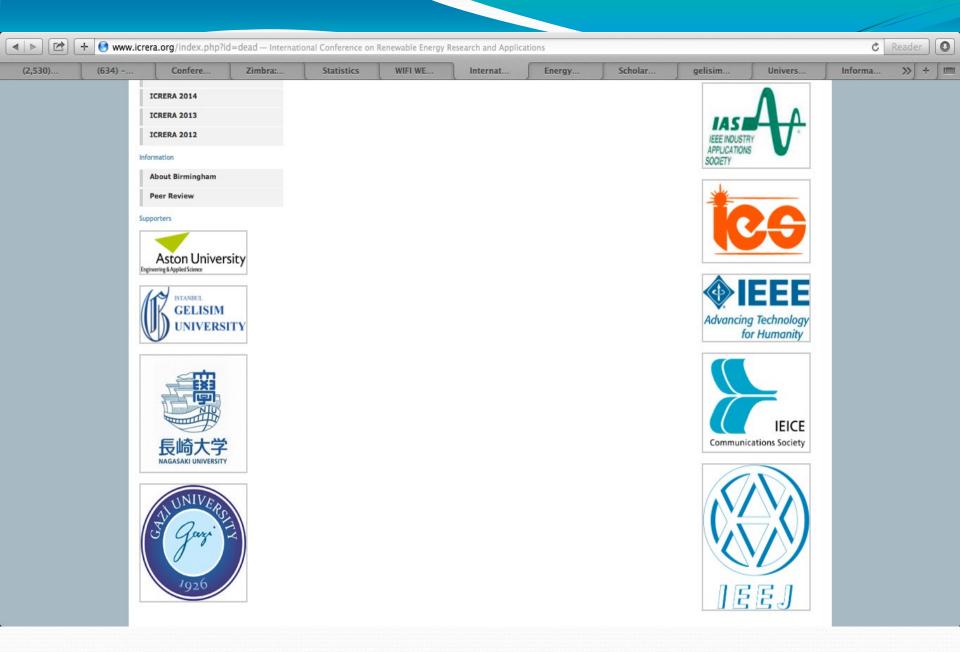
- Cost Benefit Analysis (CBA) in smart grid system will compensate the energy need in Turkey by providing energy more efficiently and environment friendly. The energy rate produced from wind turbines among renewable energies will take an active role in electric grid in the future.
- Without the knowledge of the cost and benefits of renewables, it is difficult to draw a roadmap for the countries renewable energy technology policies.

How to integrate to Smart Grid?

Benefits

- Benefits of Smart Meters
- CO₂ Reduction
- Fuel Savings

Costs


- Installing Smart Meters
- Renewables & Integration
- Updating Infrastructure
- Educating the Public

References

- Turkish wind energy statistics report,2016
- ENERCON Wind energy converters, Product Overview
- Wind energy resource assessment of Izmit in the West Black Sea Coastal Region of Turkey, Serhat Kucukali, Renewable and Sustainable Energy Reviews 30 (2014)
- Renewable Energy Technologies: Cost Analysis Series, Irene, 2012
- I. Colak, M. S. Ayaz, M. Bilgili, and K. Boran, "Cost benefit analysis of wind turbines in smart grid systems," 2014 16th Int. Power Electron. Motion Control Conf. Expo., pp. 1295–1299, Sep. 2014.
- The Economics of Wind Energy, EWEA 2012
- ENERCON, VESTAS, SIEMENS, NORDEX wind türbine datasheets
- EWEA Annual Statistics, 2015
- Turkish Wind Power Atlas 2015
- Turkish Ministry of Energy&Natural Sources Report 2015

International Journal of Renewable Energy Research-IJRER

HOME ABOUT LOGIN REGISTER SEARCH CURRENT ARCHIVES ANNOUNCEMENTS

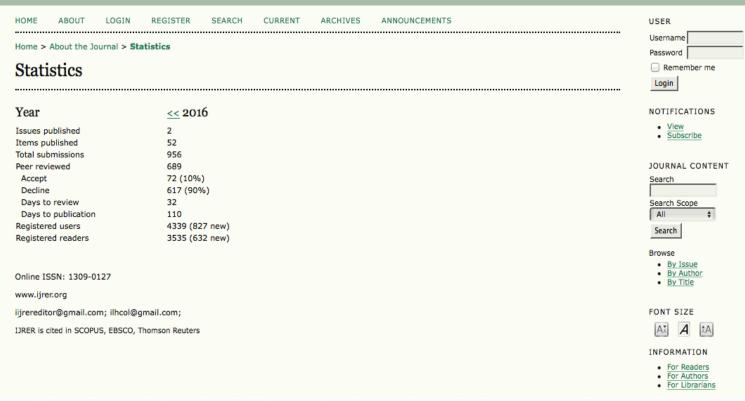
Home > Vol 6, No 2 (2016)

International Journal of Renewable Energy Research (IJRER)

The International Journal of Renewable Energy Research (IJRER) seeks to promote and disseminate knowledge of the various topics and technologies of renewable (green) energy resources. The journal aims to present to the international community important results of work in the fields of renewable energy research, development, application or design. The journal also aims to help researchers, scientists, manufacturers, institutions, world agencies, societies, etc. to keep up with new developments in theory and applications and to provide alternative energy solutions to current issues such as the greenhouse effect, sustainable and clean energy issues.

The International Journal of Renewable Energy Research is a quarterly published, free of charge, open source journal and operates an online submission with the peer review system allowing authors to submit articles online and track their progress via its web interface. The journal aims for a publication speed of 60 days from submission until final publication.

The coverage of IJRER includes the following areas, but not limited to:


- Green (Renewable) Energy Sources and Systems (GESSs) as Wind power, Hydropower, Solar Energy, Biomass, Biofuel, Geothermal Energy, Wave Energy, Tidal energy, Hydrogen & Fuel Cells, Li-ion Batteries, Capacitors
- New Trends and Technologies for GESSs
- · Policies and strategies for GESSs
- · Production of Energy Using Green Energy Sources
- · Applications for GESSs
- . Energy Transformation from Green Energy System to Grid
- Novel Energy Conversion Studies for GESSs
- · Driving Circuits for Green Energy Systems
- · Control Techniques for Green Energy Systems
- Grid Interactive Systems Used in Hybrid Green Energy Systems
- Performance Analysis of Renewable Energy Systems
- Hybrid GESSs
- Renewable Energy Research and Applications for Industries
 Constant Plantain Notice and Community

International Journal of Renewable Energy Research-IJRER

Collaboration with Gelisim University

Any kind of collaborations such as

- Research
- Staff exchange
- ERASMUS+
- Projects
- Writing up papers
- Organizing workshops and conferences are welcomed

Thanks for your kind attention!

Prof. Dr. Ilhami COLAK Vice Rector and Dean of Eng. and Architecture Faculty of Istanbul Gelisim Univ. https://scholar.google.com.tr/citations?user=bpJQuyoAAAAJ&hl=en http://w3.gazi.edu.tr/~icolak/english.htm icolak@gelisim.edu.tr; ilhcol@gmail.com Editor-in-Chief, IJRER, (www.ijrer.org); ijrereditor@gmail.com Editor-in-Chief, IJET, (http://dergipark.ulakbim.gov.tr/ijet/) Editor, JPE, (http://www.jpe.or.kr) Co-Chairman, ICRERA, (www.icrera.org); icrera@gmail.com Co-Chairman, INTELEC2015, (http://www.intelec2015.org/committees.html) Chairman, pemc2014, (www.pemc2014.com); pemc2014@gmail.com Chairman, powereng2013, (www.powereng2013.org); PowerEng2013@gmail.com;