

The European Commission's science and knowledge service

Joint Research Centre

Energy self-consumption and regulation schemes

How to build Smart Energy Regions 4th July 2016, Karlsruhe

Andreas ZUCKER, Knowledge for Energy Union, DG JRC

- Concept
- Technical boundary conditions
- Economics

What could be the role of solar home battery systems?

Is it profitable for the end-users?

Is it beneficial for the system?

How much selfconsumption?

Is it possible to go offgrid?

Energy home storage systems are available on the market

Example: Tesla PowerWall

- Gross capacity: 7 kWh
- Available capacity: 6.4 kWh
- Round-trip efficiency: 92.5%
- Warranty: 10 years
- Wholesale price (US): \$3000
 - No taxes
 - No power electronics
 - No installation
- **Turn-key price** (BE): 7000€¹

At first sight, self-consumption plus storage is not economically viable

A simplistic calculation for Belgium

- Lifetime and battery cost:
 10 years, 7000€
- Yearly cost for the battery: **700 €/an**
- Consumption of an average household: 3500 kWh, 0.2 €/kWh
- Yearly electricity bill: **700 €/an**

Current yearly battery costs are equal to the average electricity bill thus further cost reductions are required!

Storage could become attractive in case of high retail prices

Example: Retail tariff structure in Germany

One kWh stored:

- Is not fed to the grid
 => ~12 ct lost
- Avoids buying 1 kWh from the grid

=> ~29 ct saved

 The cost of stored kWh should be lower than the difference
 > ~17 ct

This difference heavily depends on exemption of self-consumed energy from grid fees, taxes and surcharges!

Evaluating Self-Consumption for a single household

The PV self-sufficiency rate is relatively constant across Europe

- Study performed for 987 households in 5 different EU countries
- High variability between households
- 30 to 35% self-sufficiency without battery

Deployment of batteries increases the self-sufficiency rate

Required capacity and costs as a function of self-sufficiency rate¹

- Self-sufficiency of 30% in absence of batteries increases to 70% if 10kWh battery deployed
- Size and costs increase sharply when trying to increase self-sufficiency beyond 70%
- Costs also increase when undersizing the battery due to fixed costs (installation, cables)

Prosumers will likely not abandon the power grid, but they will underutilize it

1) Analysis, based on real household consumption and PV production profiles for Belgium

Economic evaluation of PV/battery systems

Economic indicators

PV and battery systems can be optimised for costs of electricity (LCOE)

LCEO increase if

- Battery underutilised: Less than optimum PV for a given battery size leads higher costs of storage per energy produced.
- PV 'under-remunerated' more than optimum PV leads to more revenues from sales which are lower than buying prices.

There is a break-even price below which batteries lower energy costs

Relative size of battery, PV and LCOE as function of storage costs

- Break-even cost of the battery: 214 €/kWh for a fixed installation cost of 300€
- Optimum battery sizes increases (+60%) if prices fall further to 100 EUR/kWh
- 50% more PV panels in case with batteries
- Effect on electricity costs very small

Conclusions

- Home batteries do not necessarily allow to go off-grid
- The profitability of self-consumption strongly depends on the retail tariff structure
- Taxes, levies and surcharges are key
- Home batteries are not profitable yet (but they might be bought anyway)
- Electricity prices (retail) could keep increasing, and battery costs decreasing

The JRC develops open datasets allowing transparent assessments

JRC datasets

RES-E potentials Potentials and cost curves for biomass, solar and wind energy at NUTS 2 level

Typical applications

- Long term energy system studies
- Energy system transitions

JRC EMHIRES 30 yrs of wind and PV hourly generation time series at NUTS 2 level

JRC EPPD Full set of technical power plant data (MW, efficiencies, ramps...)

- RES-E integration
- Generation adequacy
- Power system flexibility and storage needs
- Power market design
- Network expansion

• ...

Twitter: @EU_ScienceHub

Facebook: EU Science Hub - Joint Research Centre

LinkedIn: Joint Research Centre

YouTube: **EU Science Hub**

