

Ensuring the uptake of science in DRM policy formulation and implementation.

Why? Disaster risk: a growing problem

Exposure is growing

- Interconnected economy
- Population growth
- Urbanisation

2005-2015 Globally

- 700,000 deaths
- 1.4 million injured
- 23 million homeless
- 1.5 billion affected
- ▶ € 1.2 trillion economic losses

2005-2015 EU

- 80,000 deaths
- € 95 billion economic losses

Why? Challenges in the Use of Science in DRM

3 types of needs

Networks are fragmented: Silos and Overlapping initiatives Science needs testing to allow further developments and transfer

Knowledge is fragmented: Research results are not exploited. Science doesn't reach policy and operations

Why DRMKC? Disaster risk knowledge: policy context

Union Civil Protection Mechanism

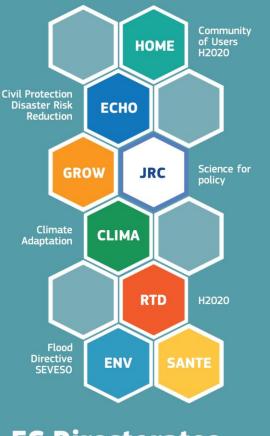
Article 5.1(a)

"Improve the knowledge base on disaster risks and facilitate the sharing of knowledge, best practices and information, including among Member States that share common risks"

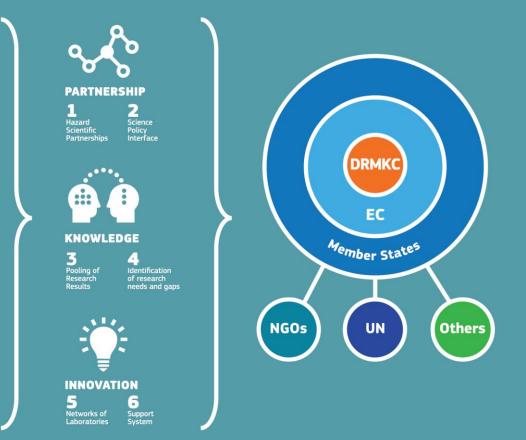
Sendai Framework for Disaster Risk Reduction

2015-2030

Call for stronger role of science and building risk knowledge

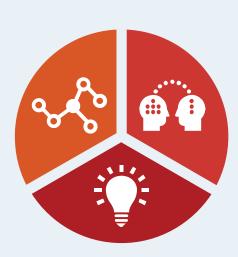


UN World Conference on Disaster Risk Reduction 2015 Sendai Japan



DRMKC

Why DRMKC?


EC Directorates

Serving

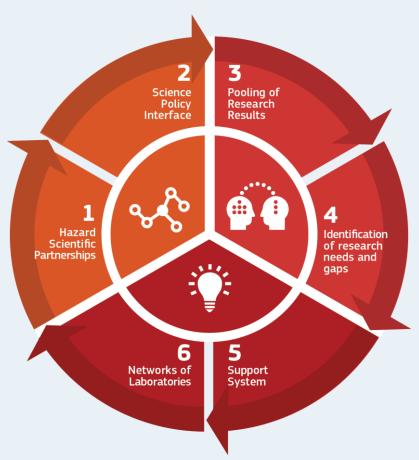
What?

DRMKC 3 key pillars

Improving science-based advice through networks and partnerships

KNOWLEDGE

Improving the use and uptake of research and operational knowledge


INNOVATION

Advancing technologies and capacities in disaster risk and crisis management

What? Action Plan - 6 Objectives

7

How? 1. Hazard Scientific Partnerships

PARTNERSHIPS

- 24/7 situation awareness at EU level
- Coherent science-based advice
- From MS to MS and EU
- Impact-based early warning
- EU and global operations

Examples

- Aristotle Project
- EFAS (Floods), EFFIS (Fires) Copernicus
- Global Informal Tsunami Monitoring System
- Global Flood Partnership
- Global Disaster Alert and Coordination System

How? 2. Science-policy interface

PARTNERSHIPS

Networks of networks

- Coherent science-based advice for policy
- Disaster risk
- EU (UCPM) and global (Sendai)
- Multi-sectorial, across policies (climate change, flood directive, solidarity fund, INSPIRE, SEVESO...)

Examples

- Sendai targets and indicators: drawing from many networks in EU (deadline 30/11)
- National Risk Assessment
- Disaster Risk Capacities Assessment
- Loss and Damage Data WG
- Disaster Prevention Expert Group
- INFORM Index for Risk Management

How? 3. Pooling of research results

loss	Search Reset
Advanced Sear	
H 4 >>	H C Page 1 of 1 Items 1-16 of 16 S0 V
1	EPISECC REA (607078) https://www.spleac.eu/ Informatics, Security Systems, Communication, Other
2	RESP REA (218138) www.ma.ac.be/r94sep Criss/karagement
3	RECONASS REA (312718) http://www.reconass.eu/ Crisis/Nangement, Criticas Interstructures
4	FLOODIS REA (607220) http://www.floodis.su/ Other
5	FLOODSAT REA (277183) http://www.mstu.edu.tr/~yllmask/html/floodsat.html other
6	FLOODSTAND RTD (218532) http://feedstand.aale.fl/ Decision Superv Ted
7	IMPRINTS RTD (226555) http://www.imprints-Pp.eu ; http://cordis.europa.eu/project/rcn/91253_en.html Crisis Management
8	KULTURISK RTD (265280) http://www.kulturisk.eu/ Crisis Management
9	MATRIX RTD (265138) http://mathc.gpl.kt.sdu/ other
10	NITIMESR REA (317382) http://cordis.suropa.su/project/rcn/105344_en.html Crisis Management
11	SERENITI REA (631128) http://www.upn.re/sereniti/ Crisis Management, Chricol Infostructures, Cyber Security
12	SYNER-G RTD (244061) http://www.vce.at/SYNER-G/ Crisis Management, Chricol Infostructures, Society
13	ECHO_2002_467 ECHO http://www.comune.taranto.r/
14	PREEMPT ECHO http://www.feem.it/
15	ECHO_2014_926 ECHO http://www.eucentre.tt/
16	IDEA ECHO http://www.polimi.it/

How? 4. Identification of needs, gaps and dissemination

KNOWLEDGE

 Systematic analysis of research needs and gaps

- Analysis of state of science
- Dissemination

Topical Newsletters

State of Science in Disaster Risk Management (bi-annual)

• In practice

First report in 2017 JRC: editorial team Lead chapter authors, author teams: call for authors

20

2016

September

How? Dissemination of Information: DRMKC Website

KNOWLEDGE

How? 5. Risk Management Support System

INNOVATION

Share best practices among MS

Facilitate the use of existing expertise for meeting risk management obligations

20

2016

September

Topical Newsletters State of Science in Disaster Risk Management (bi-annual)

• In practice

MS identifies need Project outline developed together with JRC Appropriate expertise is found Project is executed (Around 10-15 projects in 2016)

20

2016

September

How? 5. Risk Management Support System

Share best practices among MS

How? 6. Network of Crisis Management Labs

INNOVATION

Test crisis management technology and practices

Experimental approach Test market ready solutions Identify needs for further research, industrial development, or training/awareness

• Examples

- JRC European Crisis Management Laboratory:
- 7 experiments
- GDACS Crisis Centre Interoperability Benchmarks

http://drmkc.jrc.ec.europa.eu/ http://drr.jrc.ec.europa.eu/Loss-Data