EGEC Geothermal Market Report 2018

20/06/2019

Deep geothermal in Europe: market overview

Two important milestones:

- 1) More than 3 GWe installed
- 2) More than 300 Geothermal DH in operation

....and soon 2 millions geothermal HPs !

Geothermal electricity in Europe:

- 3.1 GWe capacity
- 10% average annual growth rate over the last 5 years

Geothermal district heating in **Europe:**

5.1 GWth capacity •

Installed capacity for geothermal electricity & district heating (2018, Mwe & MWth)

Electricity // Summary of key conclusions

State of Play in 2018

- Europe passes the 3 GWe threshold for installed capacity
- Sustained growth rate of 10%/year
- 2018: 352 MWe added

127 Geothermal Power Plants

- 13 new power plants in 2018 in Turkey, 1 new in Iceland
- Croatia becomes a geothermal electricity producer

Number of power plants in Europe in 2018

New installed capacity in 2018 by country

And number of geothermal power plants

12

Number of geothermal power plants per country

Installed electricity capacity by country in Europe (MWe)

Gap to achieving the geothermal electricity 2020 target in NREAPs (MWe)

Geothermal electricity capacity in Europe

Average size of geothermal electricity turbines by types of plants

Number of installed turbines by manufacturer

Main operators geothermal power plants in Europe

ORMAT (GEOTHERMIE

BOUILLANTE)

FRANCE

PLANTS IN OPERATION PLANTS UNDER DEVELOPMENT

Main Geothermal electricity developers in Europe

SOYAK ENERJI	//////		 ///	/////	2			
GREENECO	//////			/////	2			
ENEL GREEN POWER	////		/////	/////				
MB GEOTHERMAL	////	/////	/////	/////				
TOSCO GEO		/////	/////	/////	/////	2		
HS ORKA	//////		/////	/////	/////	/////	Z	
PPC RENEWABLES & ELLAKTOR	////			/////	/////	/////	2	
SORGENIA	////		/////	/////	////	/////	/////	2
FONROCHE GÉOTHERMIE			/////	/////	/////	////		
	0	1	2	3	4	5	6	7

1/2 UNDER DEVELOPMENT

PLANNED

8

9

Main developers of					
geothermal power plants					
in Europe	Country				
Fonroche Géothermie	France				
Sorgenia	Italy				
PPC Renewables &					
ELLAKTOR	Greece				
HS Orka	Iceland				
Tosco Geo	Italy				
ENEL Green Power	Italy				
MB Geothermal	Turkey				
Greeneco	Turkey				

District heating // Summary of key conclusions

State of Play in 2018

- Over 5 GWth of geothermal DH
- <u>12 new or renovated plants over the last year</u>, 150MWth

300 Geothermal DH Plants

- 5 new project commissioned in the Netherlands
- 1 new and 3 renovated plants in France
- 1 new project in Serbia
- 1 new project in Belgium
- 1 new project in Germany

New plants for deep geothermal for heating and cooling in 2018 (capacity and number)

Number of GeoDH plants in operation and under development-investigation per country

PLANTS IN OPERATION IN 2018 PLANTS UNDER EXTENSION/DEVELOPMENT/INVESTIGATION

Average size of deep geothermal heating and cooling plant per country

Gap to deep geothermal heating and cooling objectives in NREAPs

% COMPLETION NREAP OBJECTIVE

Typology of geothermal heating and cooling projects operators in Europe

Large private operator

Smaller private operator

More than 25% of the EU population lives in areas directly suitable for geothermal district heating

ICELAND POLAND NETHERLANDS CZECH REPUBLIC **SLOVAKIA** AUSTRIA 9 MWth FRANCE Temperature distribution at 1000 m: T > 50°C at 2000 m· T > 90°0 SWITZERLAND Other potential reservoirs ITALY 22 MWth ROMANIA HUNGAR)

Map of areas suitable for geoDH networks and actual geoDH installed capacity according to available geological data

Source: ETIP-DG, adapted from GEODH and EGEC market report

Shallow geothermal // Summary of key conclusions

State of Play in 2018

- Total Installed Capacity in Europe: ca.23.000 MWth
- More than 1.9 million units

Stock and sales geothermal heat pumps in 2018

Shallow geothermal energy production in selected European countries

Gap to completion of NREAP objectives on shallow geothermal (ktoe)

Supplying heat & power to companies

- CORPORATE (physical ad virtual) PPA (also to cooperatives and through networks)
- PPP & JOINT VENTURES: example of ECOGI (France)
- PROJECT DEVELOPERS: example of greenhouses in Netherlands

Challenges

- Demand for Heat supply
- Firmness of electricity supply

Risks in investments

Two important news:

- New scheme established in 2018 in Denmark and in Flanders (Belgium)
- New scheme accounced for 2019 in Walloon region (Belgium)

The GEORISK project

Target countries in Europe

- Assess transition in FR, DE, TR,CH
- Establish new schemes in HU, PL, GR

Replication in

- Europe: such as transition in Denmark, Belgium and the Netherlands + New in Croatia, Spain (Canaries Islands)
- Worldwide: transition in Chile, Kenya & Mexico

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No [818232 — GEORISK]

The GEOENVI project G E O E N V I

Carbon footprint of energy pathways

Target countries in Europe

• Cover FR, BE, TR, HU, IT, IC

Actions:

- environmental regulations
- environmental impact, risk and incident
- LCA methodology

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No [818242 — GEOENVI]

About the Vision

This VISION looks toward **the future of Deep Geothermal energy development** by 2030, 2040, 2050 and beyond, and highlights the great potential of untapped geothermal resources across Europe. After an **Introduction & Overview** the document briefly describes the **Actual Status of geothermal development** and the VISION's aim for

- > Unlocking geothermal energy
- > Increasing the Social welfare in Europe
- > Novel technologies for full and responsible deployment of geothermal potential

Rising to the Vision

Our VISION is to cover

- > A significant part of domestic heat demand and
- > a large part of **electrical power demand** in Europe by geothermal energy.

This includes taking the maximum advantage offered by the flexibility of geothermal production, providing large **centralized** as well as domestic and **decentralized** small scale options.

Unlocking Geothermal Energy: Heat development

 > Operative temperatures of the DHC network can be reduced
> By demand site management or by thermal energy storage it will be possible to balance heat demand and supply in a DH network.

Cascade applications

> CHP

Evolution of power generation and district heating

Unlocking Geothermal Energy: Power development

Improved efficiency, optimization of material, processes, cycle design

> Hybrid, proper combination

Cutting edge technologies for any kind of resource (super-hot, off-shore, geopressurized) and any place (from remote islands to urban areas)

Combined biomass and geothermal plant in Cornia, Italy

Unlocking Geothermal Energy: Combined production

CHP Carr

In the RES based interconnected energy networks geothermal and underground thermal storage play an important role

Coupling renewable heat and electricity sectors and markets for an optimal use of geothermal energy

> Consumer-producerprosumer perspectives

> Thermal storage to help balance and to optimize production

> Cascade, hybrid, synergy (e.g. geothermal-algaebiofuels-transport)

Thank you for your attention