

Innovative industrial renewal in industrial ecosystems

Lessons from the Emilia Romagna case

Antonio Andreoni

Senior Lecturer in Economics, SOAS University of London (Incoming Associate Professor of Industrial Economics, UCL)

Outline

- Analytical frameworks matter to visualise opportunities and develop innovative industrial renewal pathways
- Opportunities for diversification and innovative industrial renewal are often nested in the productive structure of industrial ecosystems
- Innovative industrial renewal can follow different sectoral and crosssectoral pathways (increasingly cross-sectoral given digitalisation)
- Industrial restructuring and industrial policy alignment is critical, especially when innovative industrial renewal requires technology fusion
- Challenges of peripheral regions in the digitalisation era

ISSN 0309-166X (PRINT) ISSN 1464-3545 (ONLINE)

CAMBRIDGE Journal of Economics

Volume 42 Number 6 November 2018

Special Issue The Dynamics of Industrial and Economic Renewal in Mature Economies: Implications for Theory and Policy

Published on behalf of the Cambridge Political Economy Society

CAMBRIDGE JOURNAL OF ECONOMICS

Volume 42 Number 6 November 2018

The Dynamics of Industrial and Economic Renewal in Mature Economies: Implications for Theory and Policy

Introducton to the Special Issue: Towards a production-centred agenda Antonio Andreoni, Ha-Joon Chang, Sue Konzelmann and Alan Shipman	1495
Smart specialisation strategies and industrial modernisation in European regions—theory and practice <i>Dominique Foray</i>	1505
A place-based developmental regional industrial strategy for sustainable capture of co-created value <i>David Bailey, Christos Pitelis and Philip R. Tomlinson</i>	1521
Industrial districts, district effect and firm size: the Italian evidence Marco Cucculelli and Dimitri Storai	1543
'Home-sourcing' and closer value chains in mature economies: the case of Spanish manufacturing David Bailey, Carlo Corradini and Lisa De Propris	1567
Multinational enterprises, service outsourcing and regional structural change Andrea Ascani and Simona Iammarino	1585
The architecture and dynamics of industrial ecosystems: diversification and innovative industrial renewal in Emilia Romagna <i>Antonio Andreoni</i>	1613
Capabilities and habitat in industrial renewal: the case of UK textiles Julie Froud, Steven Hayes, Hua Wei and Karel Williams	1643
Learning, unlearning and forgetting processes in industrial districts Marco Bellandi, Erica Santini and Claudia Vecciolini	1671
Managing technological change for inclusive growth Frank Pyke	1687
Referee List	1697
Index to Volume 42	1701
Contents of Volume 42	i

Focus

- De-industrialisation and dualism across and within regions in mature industrial economies
- Innovative industrial renewal and restructuring of regions and countries: how do we think about it? what can we learn from transforming regions?
- Re-thinking industrial policies, beyond innovation policies: addressing the very place-specific organisational and technological dynamics of the new production systems

Cambridge Journal of Economics 2018, 42, 1495–1504 doi:10.1093/cje/bey042

Introducton to the Special Issue: Towards a production-centred agenda

Antonio Andreoni, Ha-Joon Chang, Sue Konzelmann and Alan Shipman*

1. Introduction

Over the last two decades, the global industrial landscape has been dramatically reshaped by profound structural and technological transformations. Global and regional production networks have redesigned the sectoral composition of economies as well as the geography of production and international trade. Sectoral boundaries have become increasingly blurred, as a result of processes of outsourcing and industrial re-organisation along multi-tiered supply chains. The migration of production to lower-cost countries, via relocation or outsourcing, has created challenges and opportunities for continuing operations in higher-cost countries, in services as well as manufacturing (Milberg and Winkler, 2013; Gereffi and Lee, 2016; Lee et al., 2017; Merino, 2017). Technological change has also played a critical role in triggering forms of 'genetic mutation' of traditional sectors and their boundaries. For example, in some countries, a traditional sector like agriculture has been transformed in a high-tech sector where vertical farming integrates complex automated feed systems relying on sensors and advanced biotechnologies, while self-driving tractors operate through satellite control systems. Similarly, production processes in traditional heavy industries have been augmented by digital technologies and advanced materials, allowing for virtual product and process development, scaling-up and testing (Andreoni and Chang, 2016).

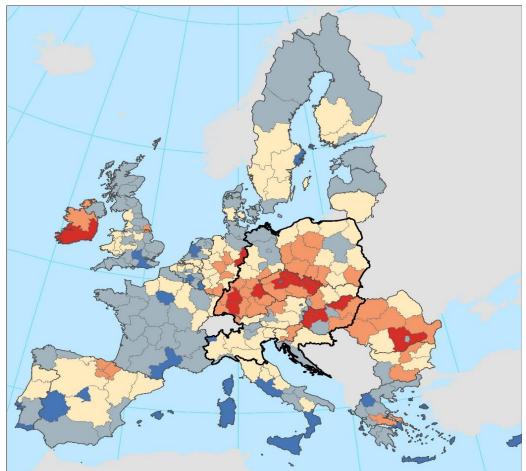
Emerging technologies and their integration into complex technological systems have led to fundamental shifts in patterns of manufacturing production and consumption; and the widespread application of automation, robotics and digital technologies in advanced manufacturing systems—coupled with new developments in nanotechnologies and biotechnologies—have accelerated the pace of technological change, while increasing systemic inter-dependencies between organisations, industries and regions.

Manuscript received 19 September 2018; final version received.

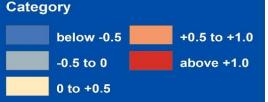
Address for correspondence: Sue Konzelmann, Department of Management, Birkbeck, University of London, Malet Street, Bloomsbury, London WC1E 7HX, UK; email: s.konzelmann@bbk.ac.uk

* Department of Economics, SÓAS, University of London (AA); Faculty of Economics and Centre of Development Studies, University of Cambridge (H-JC); Department of Management, Birkbeck, University of London (KS); and Faculty of Arts & Social Sciences, Open University (AS).

© The Author(s) 2018. Published by Oxford University Press on behalf of the Cambridge Political Economy Society. All rights reserved.


Special issue contributions

- Theory and practice of smart specialization in Europe and how to integrate value creation strategies with value capture strategies (e.g. bottleneck assets) across Europe / US
- **District/agglomeration effects** and the capability/impact on Medium size firms for industrial renewal in **Italian** districts
- 'home-sourcing' and the emergence of closer value chains in the Spanish manufacturing industries
- Demand-pull dynamics of renewal though service outsourcing by foreign manufacturing enterprises in UK local labour markets
- industrial ecosystems and diversification dynamics, the capability-habitat interplay and the variety of possible learning, unlearning and forgetting processes
- management of **technological change** for inclusive growth.


Specialisation in manufacturing (NUTS 2 regions, MVA)

- emergence of a manufacturing "core" set of regions concentrated around German's southern regions (Baden-Wurttemberg and Bayern) and Czech republic
- de-industrialisation in certain regions
- emergence of fragmented "manufacturing islands"

Specialisation in manufacturing industry

NUTS-2 regions, 2015 Manufacturing GVA share over GDP share (shares in total EU GVA and GDP) Source: wiiw

Outline

- Analytical frameworks matter to visualise opportunities and develop innovative industrial renewal pathways
- Opportunities for diversification and innovative industrial renewal are often nested in the productive structure of industrial ecosystems
- Innovative industrial renewal can follow different sectoral and crosssectoral pathways (increasingly cross-sectoral given digitalisation)
- Industrial restructuring and industrial policy alignment is critical, especially when innovative industrial renewal requires technology fusion
- Challenges of peripheral regions in the digitalisation era

Structural transformations in global manufacturing and technological landscapes .1

- Over the past two decades, profound structural transformations in the global manufacturing and technology landscapes have reshaped the worlds of production and increasingly challenged established analytical frameworks and policies.
- The **geography of production (ad trade)** has been redesigned along "glo-cal" networks and production cycles involving heterogeneous organisations operating across regional and national boundaries.
- firms have developed production, technological and market linkages beyond their regional and national systems (thus making difficult to identify their geographical boundaries), these linkages (especially the technological ones) have involved a limited number of countries, and a few regional agglomerations within them

Structural transformations in global manufacturing and technological landscapes .2

- Sectoral boundaries are also blurring as a result of global processes of vertical disintegration and industrial reorganization along multi-tiered and modularised supply chains (Milberg and Winkler, 2013; Baldwin, 2016).
- technological change and the rapid scaling up and diffusion of emerging technologies, as well as technology system integration within and across sectors, have resulted in the "genetic mutation" of traditionally defined industrial sectors
- As a response to these increasingly complex production and technological interdependencies, as well as the need to capture value opportunities in global markets, firms have experimented new industrial organization models, beyond traditional hierarchical or market forms. 9

Systems of innovation literature

- Since the 1980s contributions in **innovation system research and evolutionary economic geography**, as well as others developed at the interface of structural, evolutionary and institutional economics,
- This enormous corpus of research remain largely disconnected, also concerns have been raised with regard to the capacity of these contributions of fully addressing the types of structural transformations and systemic interdependencies characterizing modern worlds of production.
- These transformations notably include dramatic changes in platform technologies (digitalization and robotisation), changes in the demand side of innovation (Weber and Truffer, 2017; OECD, 2017), and new industrial organization models characterised by co-opetition, coadaptive and co-value creation dynamics.

SOAS University of London

Industrial and innovation system thinking

- The original idea of *National IS* (Freeman, 1987; Lundvall, 1992; Nelson, 1993) recognised the role of learning, linkages, interactions among different players (mainly supply side actors) and different institutional settlements, as main drivers of national innovation and competitiveness in developed economies and catching up ones (see the *triple helix* approach in this respect; Carlsson and Stankiewicz, 1991).
- Regional IS (Cooke et al., 2004) as well as localized learning models (Maskell and Malmberg, 1999) assigned special relevance to the regional scale and, thus, the role of proximity and localised capabilities.
- More recently, the **Sectoral System of Innovation and Production** (SSIP) approach (Malerba, 2004; Lee and Malerba, 2017) has stressed the importance of sectoral production systems as well as the role of demand side actors in innovation. Finally, the innovation system framework has been further broadened along the ideas of **Socio-Technical Systems** (Geels, 2004) and specified in terms of system functions within the *Technological Innovation Systems* research agenda (Hekkert et al, 2007).

Industrial and innovation system thinking: a critical appraisal

- 1. the changing geography of production makes more difficult to identify the "**real**" **boundaries of a national or regional (even a district) system**.
- 2. sectoral boundaries are constantly redefined by global production chain systems integrating different companies in **complex multi-layered structures**, while the same companies are undergoing forms of "genetic mutation".
- 3. Third, understanding technological change in innovation systems today requires a **stronger 'engineering focus' on technology platforms**, different types of technologies constituting them, as well as the ways in which challenges in the scaling up of emerging technologies and their commercialisation affect value creation and capture dynamics (Tassey, 2007).
- 4. Fourth, while IS research tends to focus on relations and networks among heterogeneous actors, the structure of these networks remain often underexplored, and in some cases there is a tendency to rely on horizontal/flat network representations.
- 5. the **political economy** of these systems has remained largely unexplored

Architecture and Dynamics of Industrial Ecosystems

- a new stream of research has emerged around various concepts of ecosystems – i.e. entrepreneurial, business, innovation and industrial ecosystem > These approaches share the "biological analogy" of co-evolving systems involving a broad range of interdependent supply and demand side actors, co-existing and complementing each other in co-value creation processes.
- Industrial ecosystems as hierarchic nearlydecomposable systems involving heterogeneous agents operating within multi-tiered sectoral value chains and contributing to the capability domains of the ecosystem with closely complementary but dissimilar sets of resources and capabilities.

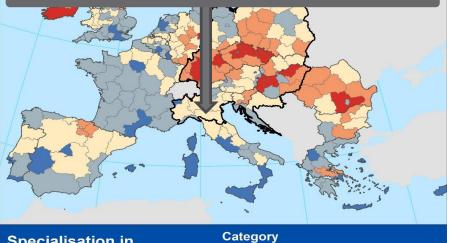
Industrial Ecosystem and its production space

- These resources and capabilities defines the production and technological bases of these organisations and their areas of specialisation (Penrose, 1959).
- Thus, the industrial ecosystem is a structured production space centred mainly on its productive organisations, as well as other public actors, intermediaries and demand-side actors, purposefully involved in co-value creation processes along various types of diversification and innovative industrial renewal trajectories.
- The geographical boundaries of the industrial ecosystem are ultimately shaped by the evolving interdependencies linking organisations within the ecosystem and by the new linkages consolidating beyond that.

Outline

- Analytical frameworks matter to visualise opportunities and develop innovative industrial renewal pathways
- Opportunities for diversification and innovative industrial renewal are often nested in the productive structure of industrial ecosystems
- Innovative industrial renewal can follow different sectoral and cross-sectoral pathways (increasingly cross-sectoral given digitalisation)
- Industrial restructuring and industrial policy alignment is critical, especially when innovative industrial renewal requires technology fusion
- Challenges of peripheral regions in the digitalisation era

Contrasting regional pathways


	Emilia Romagna	Piedmont
Population	4.4 million	4.4 million
GDP (2014)	144.14 B€	122.94 B€
GDP variation (2005-2014)	+13.2%	+2.4%
Unemployment (2015)	7.7%	9.2%
Unemployment (2006)	3.4%	4.1%
Firms (2014)	370,259	336,338
Employees	1,518,243	1,331,000
NACE C Firms (2014)	38,742	33,454
Employees	453,089	415,161

Firm size	0–9 units		10-49 unit	S	50–249 units		>250 units		Total	
Industry	Firms	Employees	Firms	Employees	Firms	Employees	Firms	Employees	Firms	employees
Food and beverage	4,094	14,214	794	14,426	118	12,793	22	15,920	5,028	57,353
Textile and apparel	4,562	13,342	782	13,930	78	7,964	13	7,617	5,435	42,853
Wood and paper	2,992	8,418	550	10,155	49	5,191	5	2,079	3,596	25,843
Petroleum	3	13	4	73	2	171	0	0	9	257
Chemicals	272	981	127	2,876	47	4,647	5	2,762	451	11,266
Pharmaceuticals	8	9	10	261	6	628	4	2,810	28	3,708
Rubber and plastics	1,703	5,654	691	14,144	141	14,731	34	19,089	2,569	53,618
Metal	5,425	17,834	1,694	31,595	173	15,422	8	3,204	7,300	68,055
Electronics	487	1,461	171	3,874	35	3,706	6	3,581	699	12,622
Electrical	705	2,265	279	5,507	53	5,505	8	3,623	1,045	16,900
Machinery	2,813	10,221	1,447	28,696	266	28,129	55	35,389	4,581	102,435
Transport equipment	335	1,022	172	3,817	41	4,019	17	11,336	565	20,194
Other	6,678	14,894	689	12,334	61	5,880	8	4,877	7,436	37,985
Total	30,077	90,328	7,410	141,688	1,070	108,786	185	112,287	38,742	453,089

Source: Own elaboration based on official data from ISTAT (2015).

Specialisation in manufacturing industry

NUTS-2 regions, 2015 Manufacturing GVA share over GDP share (shares in total EU GVA and GDP) Source: wiiw

below -0.5 +0.5 to +1.0 -0.5 to 0 above +1.0 0 to +0.5

Industrial Ecosystem	Sectoral value chains									
Architecture and Diversification Dynamics: Emilia Romagna case		Research & Development	Product Design & Supply Dew	Production &	Distribution & Marketing	Post-sale Services				
Capability domains	Sectoral value chain 1: Medical device	Sectoral value chain 2: Automotive	Sectoral value chain 3: Agro- food industry	Sectoral value chain 6: Packaging machinery industry	Sectoral value chain 5: Chemical industry	Sectoral value chain 6: Industrial construction	Sectoral value chain 7: energy & renewable			
Capability domain 1: Bio, food and agro technologies			t	t						
Capability domain 2: Advanced materials		Lean Dinamie	a Generale 🗸		→ 					
Capability domain 3: Mechanical systems and automation	↓ ↓ EGI	CON ENKI		GD	•	Trevi	→ŗ			
Capability domain 4: ICT and embedded systems	GAMBRO	~		Ť	•	-	→•			
Capability domain 5: Biopharma and medical technologies	•	•		іма	→• GV	s				

Production Space: A structured space of opportunities and constraints

Industrial Ecosystem	Sectoral value chains							
Architecture	Researc Developr		Production & Integration		st-sale rvices			
	Sectoral value chain 1	Sectoral value chain 2	Sectoral value chain 3	Sectoral value chain	Sectoral value chain n			
Capability domains								
Capability domain 1								
Capability domain 2								
Capability domain 3								
Capability domain 4								
Capability domain								
Capability domain n								

Architecture and Dynamics of Industrial Ecosystems

- Diversification dynamics, within and across sectoral value chains, in the structured production space of an industrial ecosystem, follow three main patterns:
- (i) diversification triggered by similarities;
- (ii) diversification triggered by complementarities;
- (iii) diversification triggered by *recombination/integration* across capability domains.
- Diversification may lead to innovative industrial renewal dynamics in mature industrial economies both in the form of the 'emergence' of new sectoral value chains, or the 'transformation' of the existing ones, for example when firms upgrade towards higher-value product segments.
- The 'decline' of an industrial ecosystem can be understood as a "transformation failure", thus, the incapacity to govern the transition towards₁₉ new innovative diversification trajectories.

Industrial ecosystem Architecture: Types of Diversification	Sectoral value chains								
	Sectoral value chain 1	Sectoral value chain 2	Sectoral value chain 3	Sectoral value chain	Sectoral value chain n				
Capability domains									
Capability domain 1		• nentarity			\setminus /				
Capability domain 2	\setminus /	Complementarity			Integration recombination				
Capability domain 3	Integration recommution	Simila	Complementarity						
Capability domain 4			Comple						
Capability domain									
Capability domain n				Sin	nilarity				

Table 1. The capability domains of the ER industrial ecosystem

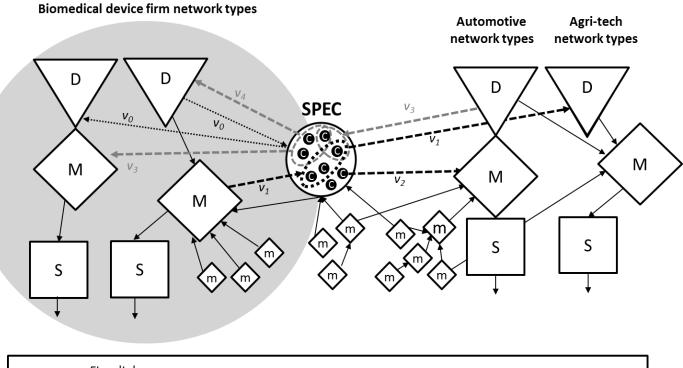
Capability domains	Distinctive clusters of resources and capabilities	Cross-sectoral value chains applications	Capability domains	Distinctive clusters of resources and capabilities	Cross-sectoral value chains applications
Bio, food and agro- technologies	 Characterisation and selection of new raw materials, their quality and safety Design and validation of equipment and plants for food processing and packaging Agro-food process and product optimisation Agro-food biological resource improvement and valorisation Mechanic and functional augmented 	 Food and beverage industries Suppliers of raw materials and semi-finished products Producers of sensors and packaging materials Seed industries Mills Ingredients and paction and packaging materials 		 Polymers and injection moulding technologies Metallurgy, corrosion and polymeric materials for the environment Ceramics High performance, functionally augmented and low-recycling-cost ceramic materials Recycled materials technology 	Energy and environment
	 Mechanic and functional augmented food Improvement of the nutritional characteristics of food Agro-food-specialised industrial equipment and mechanical plants Food packaging, including innovative materials for packaging, quality and hygiene, environmental impact of packaging Advanced plants and technique for food and drug packaging, including active packaging Molecular traceability and traceability systems Agro-food-relevant microorganism Food quality, safety and health, including use of non-destructive analysis methods Valorisation of typical productions Assisted improvement platform for the seed industry Dedicated energy crops and residual biomass in agriculture Biomass evaluation mapping and modelling for energy uses Energy conversion systems 	 semimanufactures Fruit and vegetable consortia Phytosanitary product manufacturer Packaging Chemical industry Rubber and plastic Pharmaceutical industry Machines and plants for the food industry Waste treatment and disposal 	Mechanical systems and automation	 Industrial design for mechanics Precision engineering Mechanical design, prototyping and e-testing NVH (noise, vibration, harshness) x-tronics, automation, mathematical models x-tronics, automation, logic models x-tronics, actuators, control electronics, power electronics x-tronics, sensors Automation, robotics and mechatronics: actuators and sensors Virtual prototyping and experimental modelling of mechanic systems Tracking and tracing of products and processes Augmented and virtual reality Collaborative design validation, digital mock up, virtual prototyping exploration and real-time simulation for the design of new products Mechanical properties, in particular tribological (fiction and wear), surface and multiscale coatings Coating engineering for mechanics 	 Advanced manufacturing Automatic machinery Agricultural machinery Automotive and transport Electronics ICT industry Hydraulics Industrial mechanics Mechatronics for industrial and civil use Machine tools Packaging Mechanical components Food industry Civil construction Industrial construction Chemical industry Biomedical industry Biomedical industry Logistics and transport Safety Defence
Advanced materials	 Material sciences (all material application) Development and characterisation of new materials Design, processes, synthesis and characterisation on organic and inorganic and hybrid materials Advanced materials, design and photonic applications Advanced functional materials Structured and/or composite materials for advanced applications Surface treatments 	 Advanced manufacturing Automatic machinery Agricultural machinery Automotive and transport Electronics ICT industry Hydraulics Industrial mechanics Mechatronics for industrial and civil use Machine tools Packaging Mechanical components 		 Coating engineering at the macromicro scale Processing and nanofabrication Configuration and management of integrated production systems Industrial applications of materials and innovative technological processes Machining technologies for the automotive and aeronautical sector Fluid dynamics Thermo – fluid dynamic, engines, car and vehicles Thermo – fluid dynamic, machines and energy conversion systems 	

21

Capability domains	Distinctive clusters of resources and capabilities	Cross-sectoral value chains applications	Capability domains	Distinctive clusters of resources and capabilities	Cross-sectoral value chains applications
ICT and embedded systems	 Electronic components Embedded systems Software engineering and software architecture Interoperability, protocols and 	 Advanced manufacturing Automatic machinery Agricultural machinery Automotive and transport Electronics 		 Computational bioengineering Nanobiotechnologies Clinic bioinformatics 	
	 standards Automation and control Algorithms, data and signal processing Mechatronic systems and applications Robotics Integration in components and systems Men-machine interfaces Computer vision and pattern recognition Sensor and monitoring/control systems Information and communication systems and network infrastructure Knowledge management and semantic- based systems Cloud computing, mobile and pervasive computing Internet of things Bioinformatics 	 Packaging Packaging Mechanical components Food industry Civil construction Industrial construction Chemical industry Pharmaceutical industry Biomedical industry Logistics and transport Multimedia Pubic Administrations Safety 	Source: Own of High Technology	Plaboration based on several sources including A Network data, and personal interviews with AST Bio, food and agro technolog	'ER and companies in the ER ecosystem.
Biopharma and medical technologies	 Biosensors Medical devices Drug delivery and quality by design Drug discovery E-care OMICs and bioinformatics for 'OMICs' Pre-clinic trials Diagnosis technologies Development and pre-clinic validation of biological therapeutic agents (antibody drugs) Personal health technologies Therapy technology Advanced therapies 2D and 3D scaffolds Regenerative medicine and tissue engineering in orthopaedics Pharmaceutical innovation Translational medicine, especially for innovative disease of the nervous and 	 Defence Health services Pharmaceutical- biotechnological Biomedical and biomaterials Nanotechnological ICT Cosmetics Food industry 	a	Advanced materials Biopharma and medical echnologies	d

Biocompatibility, technological innovation and advanced therapies

Industrial Ecosystem			Secto	ral value chai	ins		
Architecture and Diversification Dynamics: Emilia Romagna case		Research & Development	Product Design & Supply Dev	Production &	Distribution & Marketing	Post-sale Services	
Capability domains	Sectoral value chain 1: Medical device	Sectoral value chain 2: Automotive	Sectoral value chain 3: Agro- food industry	Sectoral value chain 6: Packaging machinery industry	Sectoral value chain 5: Chemical industry	Sectoral value chain 6: Industrial construction	Sectoral value chain 7: energy & renewable
Capability domain 1: Bio, food and agro technologies			ţ	T			
Capability domain 2: Advanced materials		Lean Dinamio	a Generale 🗸		→ 		
Capability domain 3: Mechanical systems and automation	FGI FGI	CON		GD	•	Trevi	→r
Capability domain 4: ICT and embedded systems	GAMBRO	-		Ť	•	-	→ •
Capability domain 5: Biopharma and medical technologies	•	•		іма	→• GV	s	


Fig. 4. The ER production space matrix and diversification dynamics: illustrative company cases Source: Author

The population/diversification of the industrial ecosystem

- variety of focal firms operating as system integrators, but also complementors, suppliers and specialist contractors (including knowledge-intensive business services [KIBS]) 'joining up' and 'pollinating' the industrial ecosystem
- Variety of diversification patters along similarity, complementarity and recombination (also 4IR technology fusion)
- International companies strategies for nurturing the ecosystem:
 - promoting the spin-off and development of specialist contractors
 - Corporate governance restructuring/M&E, long term contracts etc.

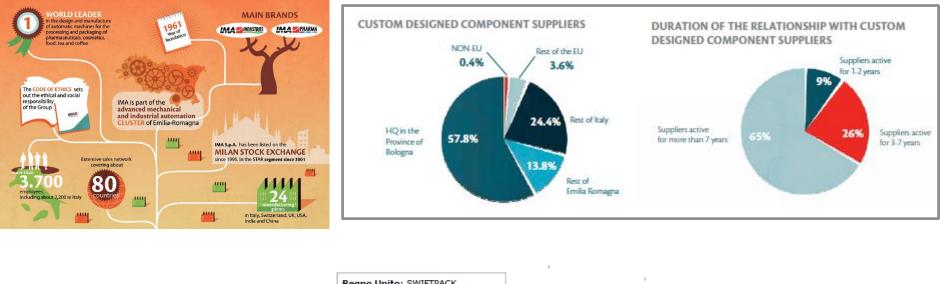
→ Firm linkage SPEC: Specialist Design D Subcontractors orchestration Production & Engineering Contractor Vector of innovation (intrasectoral) Manufacturing M *V*₀▶ (major assembly) Competency Vectors of innovation (*intersectoral*) С (technological, production Manufacturing moperational/management, V_1 membranes (components, etc) enabling) V_2 micro tubing Combinations of Sales & services S sensors competencies V_4 **••••** pumps

Policy challenges in mature industrial economies

- The policy challenge of keeping the ecosystem along a trajectory of diversification and innovative industrial renewal is paramount.
- There are multiple factors which can lead to a "transformation failure" in the industrial ecosystem and result in its decline.
- Decline might be determined by the presence of structural holes in the production space; failures in developing closely complementary capabilities; failures in catching-up with emerging technologies; extractive governance models which do not support co-value creation processes.
- New tools for designing diversification strategies which take into account the complex architecture of the industrial ecosystem are needed

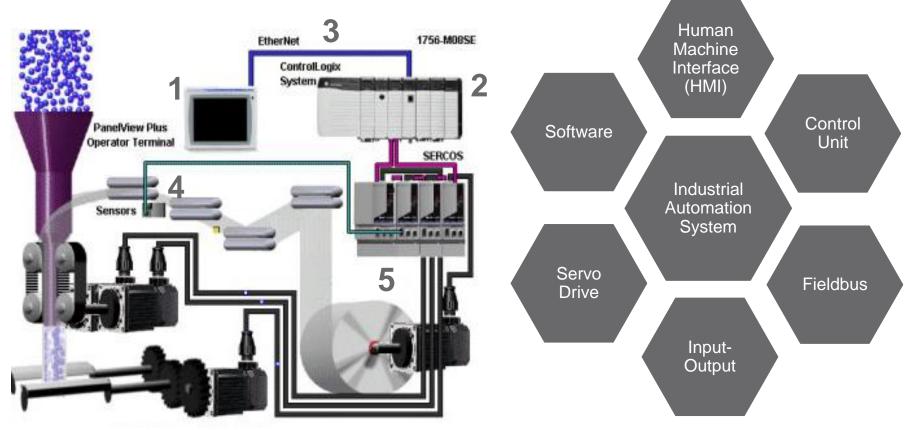
Outline

- Analytical frameworks matter to visualise opportunities and develop innovative industrial renewal pathways
- Opportunities for diversification and innovative industrial renewal are often nested in the productive structure of industrial ecosystems
- Innovative industrial renewal can follow different sectoral and crosssectoral pathways (increasingly cross-sectoral given digitalisation)
- Industrial restructuring and industrial policy alignment is critical, especially when innovative industrial renewal requires technology fusion
- Challenges of peripheral regions in the digitalisation era

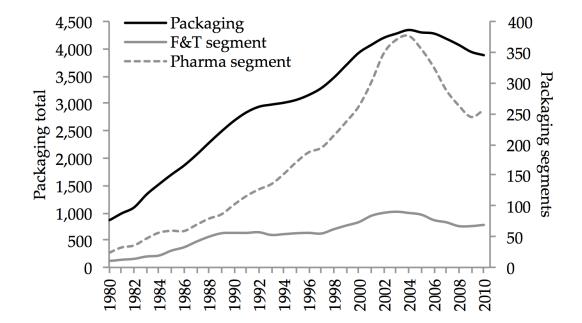

Industry case 1, ER: Packaging machinery (diversification in higher value product-segments)

- The world packaging machine industry accounts for a total turnover of over 33 billion dollars and is composed of **four main product segments**: Food, Beverage, Personal Care, and Pharmaceutical packaging.
- Over the past 15 years the industry has grown at a cumulative rate of 15%, with the Pharma value-product segment growing at over 20%. Together with Baden-Württemberg and Hessen in Germany, Emilia Romagna (ER) in Italy is the regional industrial system with the highest concentration of firms producing automatic packaging machines
- The **industrial ecosystem of the Emilian packaging valley** is mainly composed by SMEs operating as subcontractors, however four global leaders are also located in this area: IMA, GD, SACMI and Marchesini.

Among them, **IMA** has been the most successful in shifting towards the highest value-product segment of the packaging industry – i.e. Pharma.


The IMA case: from Food to Pharma

Industry case 1, ER: Packaging machinery (diversification in higher value product-segments)

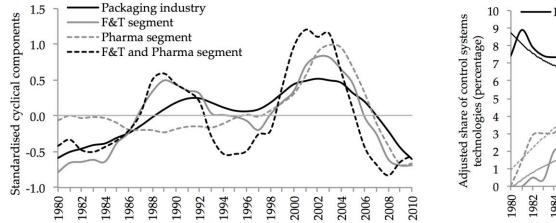


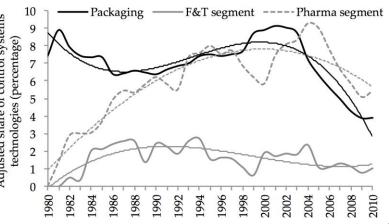
Packaging machines have evolved, over the past two decades, from an architecture based on mechanical components, *into* a combination of mechanical transmissions, robotics, interfacing electronics, and control software. This modularity prompting the need for new production capabilities, pave the way for a totally integrated mechatronic platforms.

Industry case 1, ER: Packaging machinery (diversification in higher value product-segments): Tecnology cycle

strong technology dynamism reaching two peaks in 1992 and 2004

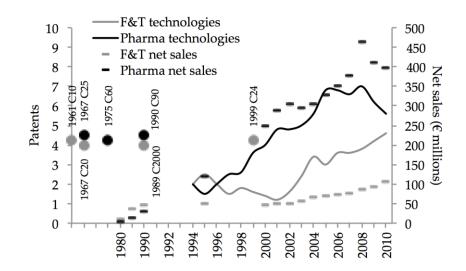
the F&T segment


- reached a stage of technology maturity starting from the late 1980s,
- its most substantial expansionary cycle (1998-2004) was correlated with the strong technological acceleration in the Pharma segment starting from 1998.


 at product segment level, we observe two very different patterns for F&T and Pharma. Technology applications in the F&T segment remain fundamentally stable over the entire period, with on average 60 patents applications per year. E

Industry case 1, ER: Packaging machinery (diversification in higher value product-segments): technology transition

- we can identify the technology cycles for each product segments (by extracting the standardised cyclical components of the patents applications patterns and removing the segment specific trends
- we track the transition from mechanics to mechatronics (adoption and integration in packaging machines of automatic control systems based on electronics, information and communication technologies): this technology transition opened higher value-product segment opportunities resulting from the increasing operational speed and configuration flexibility of the packaging machines, the full traceability of the packaged products and the possibility of integrating and standardising entire packaging production lines

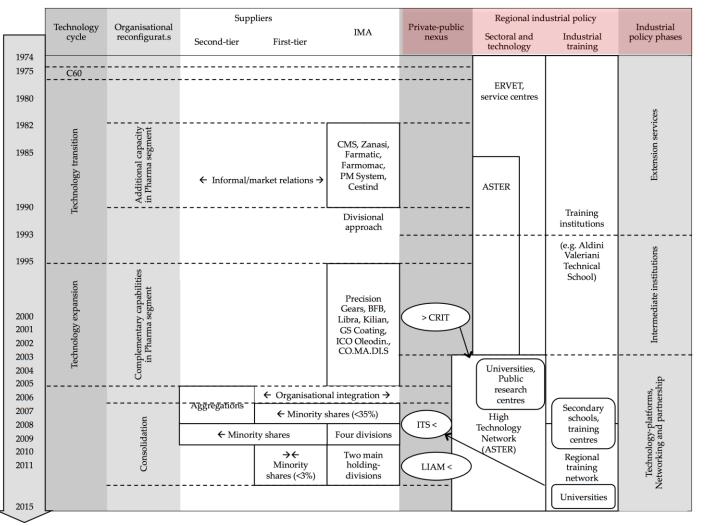


Industry case 1, ER: Packaging machinery (diversification in higher value product-segments): Technology transition and organisational reconfiguration

What IMA did to diversify into higher-value product segments?

Technological transition

IMA is today's the world leader in the production of packaging machines and integrated packaging lines for the Pharma segment with a world market share of 16%



Organisational reconfiguration: internal structure and its strategic relationships with the ER regional production system

- Internationalisation, in two stages
- Acquisition of complementary capabilities
- Organisational integration and consolidation of local suppliers 33

Industry case 1, ER: Packaging machinery (diversification in higher value product-segments)

The role of the Public Sector: -3 phases -2 axes

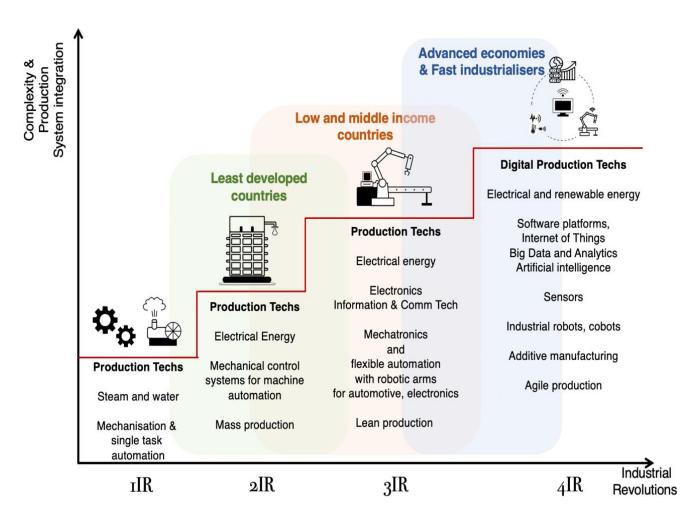
Key lessons:

•Continuous policy/institutional re-alignment

•Multi-level interventions (IMA, first, second tier suppliers) for industrial ecosystem development

High Technology Network – ASTER **Technology platform based PTIs**

Outline

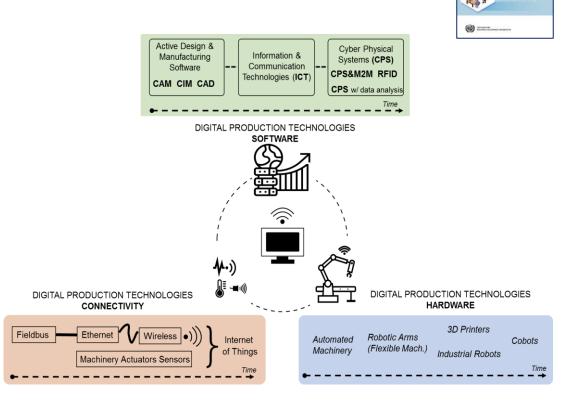

- Analytical frameworks matter to visualise opportunities and develop innovative industrial renewal pathways
- Opportunities for diversification and innovative industrial renewal are often nested in the productive structure of industrial ecosystems
- Innovative industrial renewal can follow different sectoral and crosssectoral pathways (increasingly cross-sectoral given digitalisation)
- Industrial restructuring and industrial policy alignment is critical, especially when innovative industrial renewal requires technology fusion

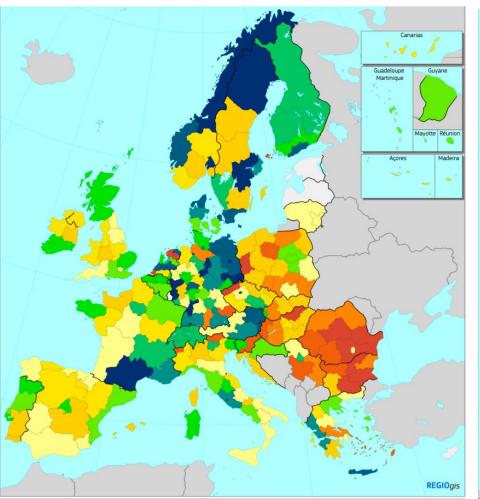
Challenges of peripheral regions in the digitalisation era

Digitalisation

Evolutionary transition or evolutionary disruption?

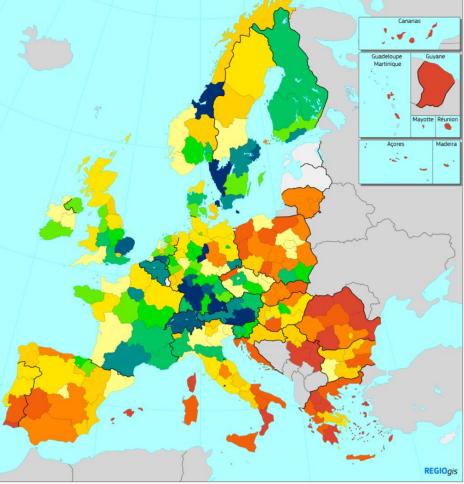
Source: Author, see IDR 2020

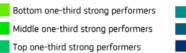


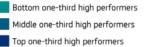

Digital production technologies

Evolutionary transition or evolutionary disruption?

Digital production technologies: backbone of productivity and sustainability


 result from incremental changes in the *hardware* of these machines, as well as their *software* – thus, their functionalities and data use in a cyber-physical space – and their *connectivity* – thus, their integration with other production technologies (and products).





Bottom one-third low performers Middle one-third low performers Top one-third low performers Bottom one-third moderate performers Middle one-third moderate performers Top one-third moderate performers

R&D expenditure in the business sector as percentage of GDP

SOAS University of London

Challenges in digitalisation

Technology absorption, effective deployment and 'capability threshold'

Production system retrofitting and integration

Basic and digital infrastructure

Technology diffusion, 4IR islands and the digital capability gap

Endogenous asymmetries in technology access and affordability

Summing up

- Analytical frameworks matter: Industrial ecosystem
- Opportunities for diversification and innovative industrial renewal
- Innovative industrial renewal: sectoral and crosssectoral pathways
- Industrial restructuring and industrial policy alignment
- Challenges of peripheral regions in the digitalisation era