International good practice case studies of University-Industry Cooperation

Todd Davey

European Commission

TRADITIONAL VIEW OF UNIVERSITY-BUSINESS COOPERATION

66

Any activities aimed at transferring knowledge or technology that may help either the company or the academic institute – depending on the direction of transfer – to further pursue its activities.

55

Source: Arvanitis, S., Kubli, U., Woerter, M., (2008a), University-industry knowledge and technology transfer in Switzerland: What university scientists think about co-operation with private enterprises ,Research Policy, 37(10), 1865–1883.

Traditional university-industry cooperation activities

R&D licensing Bespoke teaching TRANSACTIONAL Testing service Professional education Academic problem solving R&D consulting Academic spin out Lifelong learning Student start-ups Sponsorships Industrial PhDs | Chairs Collaborative R&D RELATIONAL Education-driven Research-driven Student-driven

Traditional university-industry cooperation activities

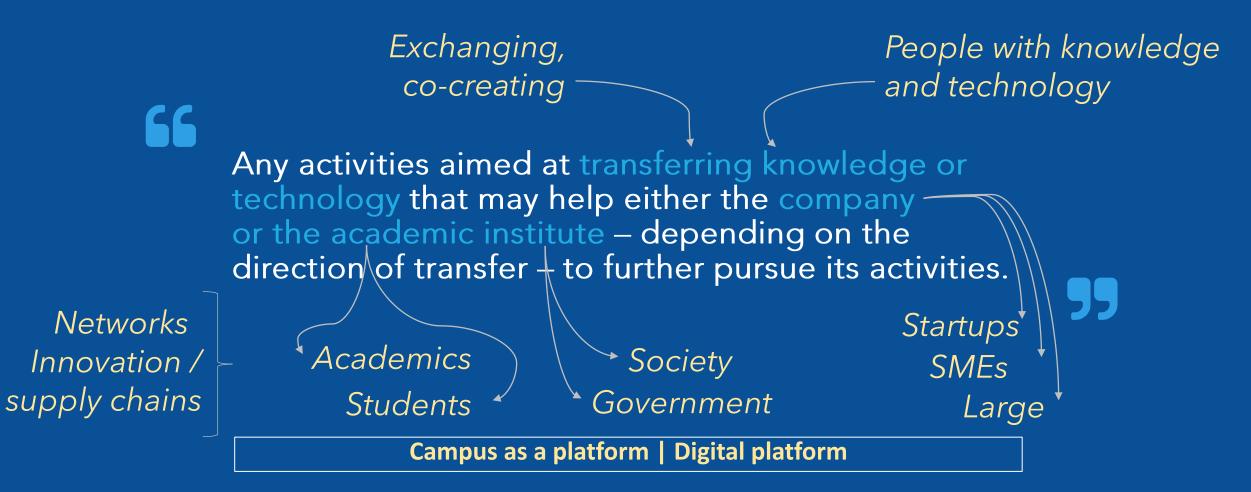
	Description	Advantages*	Disadvantages*
R&D licensing	A formal agreement that allows the transfer of technology between two parties	 Upfront and reoccurring fee possible Uniqueness, point of difference 	 Further involvement often required to make it work Cost: Patents, legal fees, fees
Testing service	Work involves analysis, measurement or testing and a high degree of intellectual input	 Fee for work Can lead to consulting work Scientific validity 	 Takes the academic away from other research work Fees, timeframe uncertain
Academic problem solving	Advisory services provided by individual academic researchers to their industry clients	Fee for workCan be lucrativeDirect result	 Takes the academic away from other research work Can be costly
R&D consulting	Directly commercially relevant research to firms and is explicitly commissioned by firms to be applied	Fee for workSolves immediate problems	 Takes the academic away from other research work Lack of investment from academic
Academic spin out	A new company founded to exploit a piece of IP created in an academic institution	 Academic autonomy Research/tech-driven leads to potentially higher returns 	 Time consuming and bureaucratic Takes the academic away from other research work
Collaborative R&D	Joint research funded by both business supplemented with govt. funds or academic time dedicated	 Funded research New knowledge and technologies Builds reputation 	 Differences in motivations and desired outcomes No result emerges

Note: Advantages and disadvantages for academics and business marked in black and blue respectively

Should we primarily focus on R&D licensing?

In 1991, the total license revenue for US universities was \$130 million, in 2015 it was \$2.4 billion.

66


Since 1970, Stanford had over 5,000 patents issued, only 79 of those generated more than a million, only 3 generated more than \$100 million.

However, 15 US universities produce nearly 70% of the US license income.

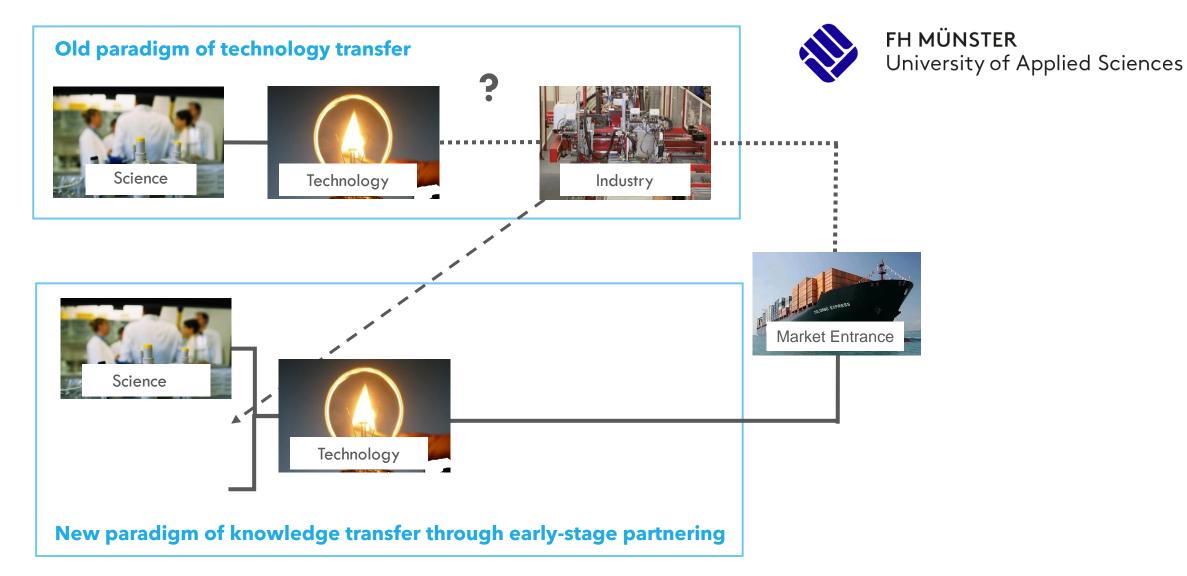
66

55

MODERN VIEW OF UNIVERSITY-BUSINESS COOPERATION

Source: Arvanitis, S., Kubli, U., Woerter, M., (2008a), University-industry knowledge and technology transfer in Switzerland: What university scientists think about co-operation with private enterprises ,Research Policy, 37(10), 1865–1883.

Modern university-industry cooperation activities


TRANSACTIONAL

RELATIONAL

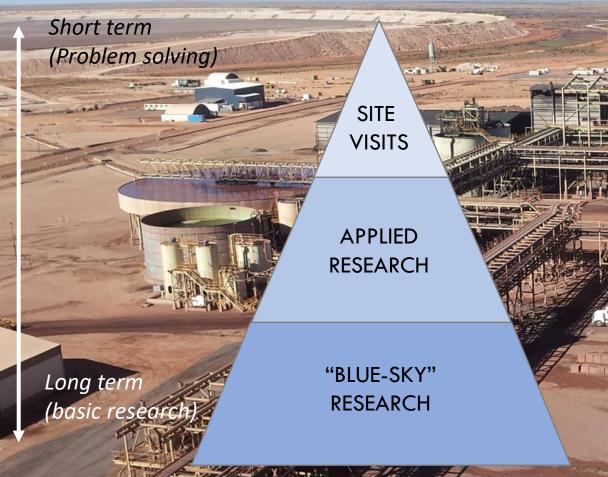
R&D licensing	Bespoke teaching			
Testing service	Lifelong learning			
Academic problem solving	Professional education			
R&D consulting	Hackathons			
Entrepreneur spin out	Student-business projects			
Academic spin out	Lifelong learning	Student start-ups		
Sponsorships				
Industrial PhDs Chairs		Student-business IP program		
Collaborative R&D	Dual-study programs			
Resource sharing (incl. institute co-location, science/industrial parks, incubators, accelerators equipmen				
Strategic partnerships / networks				
Research-driven	Education-driven	Student-driven		

Early-stage (strategic) research partnerships

Münster University of Applied Sciences, Germany

Strategic (innovation and recruitment) partnerships

Siemens, Germany


Siemens university-industry interaction approach is based on various stages, from one-time collaboration, to framework contracts to a strategic partnership

Key success factors:

1. Long-term commitment e.g. CKI programme

- 2. Relationship management e.g. Siemens CKI Managers resident within universities.
- 3. Aligning research and innovation to talent acquisition

Early-stage (strategic) research networks AMIRA P260 Supply Chain Research Partnership

Recognise motivations & (ideally) ensure desired stakeholder outcomes Includes:

- Consortium of large mining / minerals companies
- SME supply chain partners
- Research institutions

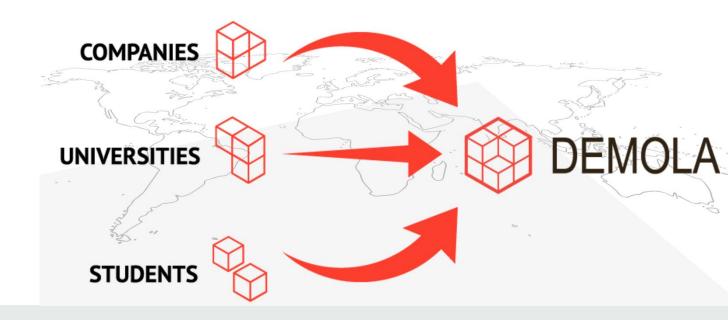
Running for over 29 years Project iterations (3-4 years each) Co-funded (industry supplemented by government)

RESULTS 300 refereed research publications 50 PhD students 41 working mining and processing sector

Total benefits: \$1AU billion (€670 Million)

Student-Business IP Program

Tampere, Finland


DEMOLA

BUSINESS - **Bring business challenges, technologies, ideas** to students. Businesses buy the idea back at the end of the project based on three models **STUDENTS** - (cross-disciplinary) Develop **solutions, new technologies and new business concepts** over 4 months, including 3 pitches and creation of a prototype. Get to own the **idea if the business doesn't want it, gets paid if they do.**

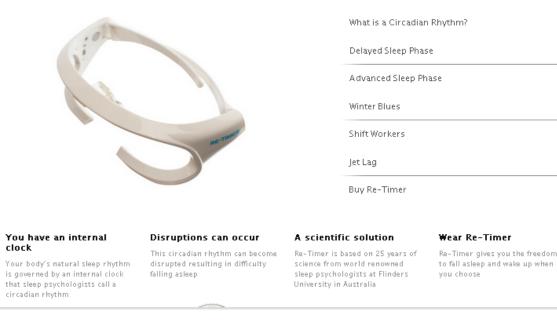
UNI - manage the **programme** and IP, provide **mentorship** and assign marks and <u>credit points</u> to students

RESULT

- 96% of completed Demola projects are licensed by the project partners.
- Over 10% of students are headhunted by the companies they worked with; and all students get a taste of entrepreneurship.

(Entrepreneurship) Academic-SME spin-out

Flinders University, Australia


- University recruited an entrepreneur to develop the academic spin-out within the university incubator.
- University provides the patent license and incubation and takes a share in the enterprise

• **EXAMPLE**: RE-TIMER

- Partnered with an industry partner: SMR Automotive, a medium-sized Australian <u>contract manufacturer</u> who wanted to <u>grow</u> <u>and diversify</u>.
- Competencies in lighting and <u>injection</u> <u>moulding</u>
- The incubator supplied the <u>entrepreneur</u> and technology
- International (expert) focus

RE-TIMER[™]

Change your sleep rhythm to suit your lifestyle

AIMday

A simple concept of getting scientists and professionals from industry to get to build trust through collaboration

Uppsala, Sweden

"One question, one hour, one group of experts"

An event where **businesses and public** organisations get to discuss actual problems. It is organized since 2008 by Ångström Academy, a part of Uppsala University Innovation (UUI). Between 2008 and 2019 more than 50 AIMday events were organised.

Outcomes:

- Creation of <u>new contacts and trust building</u>
- <u>Knowledge transfer</u> between researchers and businesses/organisations
- New approaches to <u>solving problems</u>
- Collaborative <u>projects</u>

Infrahack Hackathons Global

"Hackathons are a testing ground for new ideas. They attract a diverse pool of participants, bringing multiple perspectives. The time-sensitive nature of a hackathon creates a uniquely productive atmosphere that encourages participants to distil their ideas into actionable solutions. After all, necessity is the mother of invention."

Format

- Short design sprints that aim to solve specific challenges or problems
- The teams consist of data scientists, designers, developers, and entrepreneurs, and the solution can take the form of software, an app, a website, and more

Themes

- Digital Twins: Can digital replicas of infrastructure be used for better planning and maintenance?
- Energy Utilisation: How can we accelerate the adoption of clean energy and utilise energy more efficiently?
- Defect Detection: How can we use artificial intelligence to predict and prevent faults from occurring?
- Connected Infrastructure: What can we achieve if our assets are allowed to talk to each other?

COUNTRIES

- England, Italy, Netherlands, China,
- nmark, Philippines, Portugal, Germany, Canada,

15 PARTNERS

Network Rail, TfL, NIC, National Grid, BEIS, YPP, Northumbrian Water, Mott Macdonald, Highways England, Centre for

Challenge Projects

Institute Mines Telecom Business School, France

WHAT IS AN URBAN CHALLENGE?

Students' incl

... act as consultants to solve city/regional issues

(delivered in a programme run by universities)

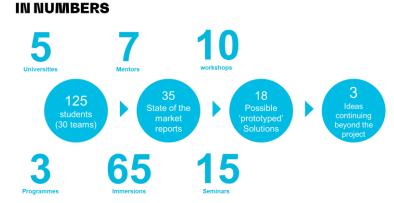
- Bachelor
- Master
- Phd
- Academics
- Industry
- Societal actors
- ...

Elements: Seminars | Master classes Workshops

Immersion (site visit)

Mentors

Online system support


Tools

Timeframes:

- 2 days
- Semester long
- Summer school
- Curricula bound or extra curricula

EXAMPLE: URBAN CHALLENGE

Dual study programmes

VW & Baden-Württemberg Cooperative State University, Germany

An emerging **hybrid form of higher** education, which offers the participant the opportunity to complete a:

- 1. A degree programme at a higher education institution
- 2. A certification of practical vocational training or work experience in a company.

In Germany:

- **70%** of these courses are related to the engineering field and to economics and business studies.
- The remaining **30%** is made up by computing, social sciences and others.

BADEN-WÜRTTEMBERG COOPERATIVE STATE UNIVERSITY (DHBW)

First university in Germany to combine **on-the-job training at numerous partner enterprises and classical academic studies**.

With around **34,000 enrolled students**, over **9,000 partner companies** and more than **145,000 graduates**, DHBW is one of the largest higher education institutions in Baden-Wuerttemberg.

About their dual study programmes:

- lasts 8 semesters on average.
- students to earn whilst they learn through a monthly payment
- ultimately leads to a **job at VW**.
- can be undertaken in a **range of topics** including: information technology, mechanical engineering, electrical engineering etc.

Baden-Württemberg Cooperative State University (DHBW)

Dual study programmes

VW & Baden-Württemberg Cooperative State University, Germany

State University (DHBW)

VOLKSWAGEN GROUP

Dual study programmes can be undertaken in any of the six VW locations in Germany.

Areas of specialisation include business studies; electrical engineering; body structure development; automotive information technology; information technology; mechanical engineering; sales management; mechatronics; materials sciences; logistics; industrial engineering; and, economics.

The programmes should:

- Allow <u>extended periods</u> of time in the company,
- <u>Flexible</u> to the academic curriculum requirement
- Executed in <u>12-week periods</u>
- Last 8 semesters

Lifelong learning focus

Danube University Krems, Krems, Austria

Founded in 1994 as a centre for continuing education, DUK's entire educational structure is geared towards the particular standards and requirements of middle-aged professionals and executives.

More than 9,000 students from 91 countries studying 200 different courses make it one of the leading universities of continuing education in Europe today.

 50% of students have worked in their fields for more than 10 years
 15% of the students have successfully launched their own companies after their studies.

Curriculum development & delivery | Research Clemson University International Center for Automotive Research

An exemplary automotive-sector public-private cooperation in research and education

Deep orange

- Vehicle prototype 24-month program where students, multidisciplinary faculty, and participating industry partners work together to produce a new vehicle prototype each year.
- Hands-on learning experience in multi-disciplinary teams.
- Sponsored by major automotive industries of Toyota, Mazda, General Motors and BMW.

"It's the only program of its kind where students begin with nothing more than ideas and finish with a vehicle"

Deep Orange Vehicle Prototyping Program is an extraordinary initiative that gives students the opportunity to create a prototype vehicle in two years

DEEP OR GENERATION Y & Z

Shared resources

Amsterdam Science Park, The Netherlands

The Amsterdam Science Park is home to world class research, with a focus on data science, life science and material science

- 175+ companies Large, SME, startups
- 7000+ students

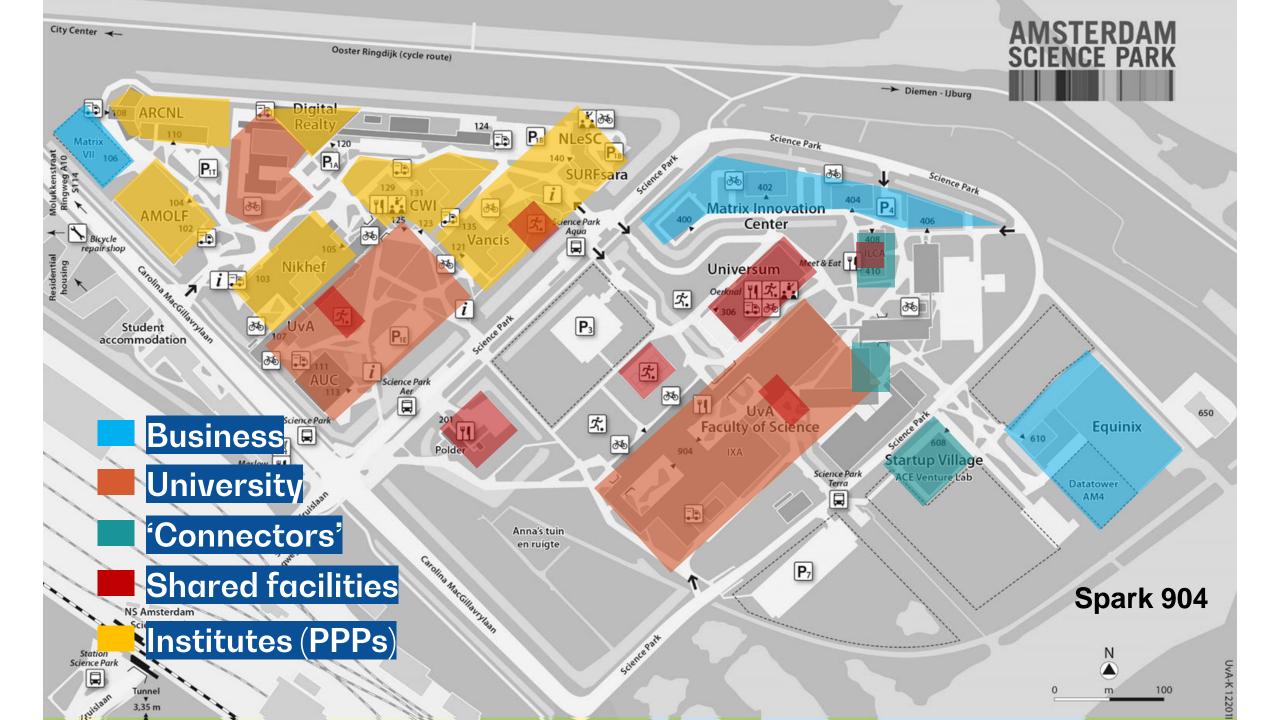
World-class Research Institutes

Shared R&D facilities

Shared facilities – Cafes, Restaurants, bars, fitness

Shared resources

Amsterdam Science Park, The Netherlands


WORLD-CLASS RESEARCH

- AMOLF academic institute for fundamental physics with high societal relevance
- CWI Dutch National Research Centre for Mathematics and Computer Science
- Nikhef National Institute for Subatomic Physics
- SURFsara Computing and Networking Services NLeSC Netherlands eScience Center University of Amsterdam, Faculty of Science^{*} Amsterdam University College
- ARCNL Advanced Research Center for Nanolithography (joint venture with ASML)
- Qusoft Research Center for Quantum Software

AI & data science

High tech systems & materials

Life sciences

Shared resources

Amsterdam Science Park, The Netherlands

Amsterdam Science Park START UP VILLAGE

enture Stud

BEEHIVES BIRDHOUSES

COMMUNITY SPACE

SCIENCE PART

Questions or comments?

todd.davey@imt-bs.eu

European Commission Joint Research Centre