Digitizing Industry and the Circular Economy: European Priorities

Dr. Panagiotis STAVROPOULOS

Laboratory for Manufacturing Systems & Automation (LMS) University of Patras, Greece
www.lms.mech.upatras.gr
The Laboratory for Manufacturing Systems & Automation (LMS) is oriented on research and development in cutting edge scientific and technological fields. LMS is involved in a number of research projects funded by the CEU and European industrial partners. Particular emphasis is given to the co-operation with the European industry as well as with a number of "hi-tech" firms. LMS employs approximately 70 researchers.

- Participation in more than 150 R&D Projects
- Organization of more than 10 International conferences.
- Publication of more than 500 Scientific articles
LMS: Areas of Expertise

LMS is organized in Three Different Groups

Manufacturing Processes
- Additive Manufacturing
- Advanced Material Removal Processes
- Advanced Joining Processes
- Advanced Forming Processes
- Advanced Surface Treatment Processes

Manufacturing Automation, Robots & Virtual Reality Applications
- Collaborative Robots in MFG Environments
- Human-Robot Collaboration in MFG
- Process Control & Automation
- Virtual Prototyping
- Digital Human Simulation
- Process Simulation
- Virtual Collaborative Environments

Manufacturing Automation, Robots & Virtual Reality Applications
- Collaborative Robots in MFG Environments
- Human-Robot Collaboration in MFG
- Process Control & Automation
- Virtual Prototyping
- Digital Human Simulation
- Process Simulation
- Virtual Collaborative Environments

Manufacturing Systems
- Industry 4.0, Automation & Product-Service Systems
- Design & Planning of Manufacturing Systems & Networks
- Mass Customization & Personalization
- Machine and shop-floor Monitoring
- Adaptive Planning and Control
- Mobile Apps Technology for Planning & Control
- Modelling and Measurement of Flexibility & Complexity
The FUTURING Project

FUTURING defined a strategy for Europe’s Circular Economy
in the context also of digitizing manufacturing
FUTURING Objectives

- Vision for a Smart, Clean, Human-Centred EU Industry.
- Definition of relevant building blocks.
- Policy support and recommendations.
Methodology

Framework Conditions

Areas with business case potential in circular economy

Baseline Vision of EU in the Circular Economy

Concrete Policy Actions

Evidence-based Analysis & Benchmarking

Results

1

2

3

Science & Technology

Policy & Finance

Environmental Responsibility

Education & Training

Human & Society

Business & Innovation
Realization Structure
Research questions of transition-oriented analysis to Circular Economy

<table>
<thead>
<tr>
<th>FUTURING’s Building Blocks</th>
<th>Research questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science & Technology</td>
<td>What digital technologies support the transition to a circular economy?</td>
</tr>
<tr>
<td>Business & Innovation</td>
<td>What digital business models support the transition to a circular economy?</td>
</tr>
<tr>
<td>Policy & Finance</td>
<td>How can policy and finance ensure the transition to a digital circular economy?</td>
</tr>
<tr>
<td>Human & Society</td>
<td>How can individuals and society as a system support the transition to a digital circular economy?</td>
</tr>
<tr>
<td>Environmental sustainability</td>
<td>How can the environment be sustained by the transition to a digital circular economy?</td>
</tr>
<tr>
<td>Education & Training</td>
<td>How can education and training support the transition to a digital circular economy?</td>
</tr>
</tbody>
</table>
Enablers of digitization in circular economy

Science & Technology

- **Industry 4.0**
 - **Cloud Computing**
 - Apps
 - Big Data
 - Real-time data
 - 5G, NFC, IPv6
 - **Cyber Physical Systems**
 - Smart products
 - Sensors & Actuators
 - Machine2Machine
 - **Smart Factory**
 - Digital twins
 - Human2Machine interaction
 - Plug & Produce

Pillar Actions

- Share, Loop
- Regenerate, Exchange
- Optimize, Virtualize

(indicatively addressed)
Enablers of digitization in circular economy

Business & Innovation

Digital Business models

- **Value as Service**
 - Logistics as a service
 - Mobility as a service
 - Assembly as a service
 - Maintenance as a service

- **Platform as Service**
 - App store
 - Manufacturing Platform
 - Dynamic Networks

- **Infrastructure as Service**
 - Cloud computing
 - Mobile Communication
 - Grids

Pillar Actions (indicatively addressed)

- Optimize, Share
- Virtualize, Exchange
- Optimize, Loop
Enablers of digitization in circular economy

Policy & Finance

“Digital” legislations

- Data protection and copyright legislations
- Incentives & Regulations
- National and international standardization
- Insurance related legislations
Enablers of digitization in circular economy

Human & Society

Maintaining physical and psychological health of employees

- Stressful work to be carried out by intelligent machines
 - Exchange

- Decision-making mechanisms to support employees
 - Virtualize

- Digitization supports flexibility and networking
 - Optimize

Pillar Actions
(indicatively addressed)
Enablers of digitization in circular economy

Environmental Responsibility

Enabling technologies

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technologies for “self-assembly”</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>****</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Innovative micro/nano-manufacturing processes</td>
<td>****</td>
<td>****</td>
<td>**</td>
<td>**</td>
<td>****</td>
<td>****</td>
<td>**</td>
<td>****</td>
</tr>
<tr>
<td>Additive manufacturing</td>
<td>*</td>
<td>****</td>
<td>****</td>
<td>*</td>
<td>****</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Flexible Sheet-to-Sheet (S2S) and Roll-to-Roll (R2R)</td>
<td>**</td>
<td>**</td>
<td>****</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Innovative physical, chemical and physicochemical processes</td>
<td>****</td>
<td>****</td>
<td>**</td>
<td>**</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>Integration of non-conventional technologies and conventional technologies</td>
<td>****</td>
<td>****</td>
<td>**</td>
<td>**</td>
<td>****</td>
<td>**</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>Methods for handling of parts, metrology and inspection</td>
<td>****</td>
<td>****</td>
<td>**</td>
<td>**</td>
<td>****</td>
<td>**</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>Photonics-based materials processing technologies</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>**</td>
<td>**</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>Collecting, dismantling, sorting and recycling processes</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>Shaping technology for difficult to shape materials</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>**</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>ICT solutions for factory floor and physical world inclusion</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>ICT solutions for modelling, simulation and management tools</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>Control technologies, Robots and Automation</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
</tbody>
</table>
Enablers of digitization in circular economy

Education & Training

Use of advanced ICT in the Teaching Factory paradigm
Circular Economy in FUTURING

Ecological + Societal + Economical

Sources:
- Ellen MacArthur Foundation, SUN, and McKinsey Center for Business and Environment; Drawing from Baumgart & McDonough, Cradle to Cradle (C2)
- LMS, FESTO
- FUTURING Consortium
FUTURING Consortium
Thank you for your attention!