Stairway to Excellence
Cohesion Policy and the Synergies with the Research and Innovation Funds

Example of Synergies

Strengthened R&D infrastructure
(KTU's K. Baršauskas Ultrasound Research Institute)

Lithuania

Agnė Paliokaitė
Executive Summary

K. Baršauskas Ultrasound Research Institute of Kaunas University of Technology benefited from the ESIF project “Creation of national open access R&D centre in Kaunas University of Technology” (€36.5m). The EU Structural Fund investment helped the Institute to build capacity needed to join the FP7-funded projects that would not be otherwise possible. During the ESIF project K. Baršauskas Ultrasound Research Institute purchased new equipment (ultrasonic microscope, immersion ultrasound stands, x-ray micro-tomography equipment). This new infrastructure enabled the Research Institute to successfully participate and implement a number of new FP7 projects (“SprinkTest”, “CreepTest”, “SAFEJOINT, “SkinDetector”).

Type of synergies

- Upstream activities
- Sequential funding

S&T field targeted by the synergies

- Health
- Materials

Support from Jonas Antanavičius (Visionary Analytics) is acknowledged.

The views expressed are purely those of the author and may not in any circumstances be regarded as stating an official position of the European Commission.
1. **INTRODUCTION**

The case presented in the following sections is one of the examples of synergies provided by the ‘Stairway to Excellence’ project in which different sources of funding have been combined to amplify the R&I investments and their impact on the economy and wider society.

As described in the guide ‘Enabling synergies between European Structural and Investment Funds, Horizon 2020 and other research, innovation and competitiveness-related Union programmes’, synergies can be achieved through:

- **Sequential (or successive) funding** that use funds in separate projects built on each other;
- **Parallel funding** that use funds in separate projects complementing each other;
- **Simultaneous/cumulative funding** that brings together Horizon2020 and ESIF funds in the same project aimed at achieving greater impact;
- **Alternative funding** that reorients FP7/Horizon 2020 projects that were positively evaluated, shortlisted, but not funded given the limited budget, towards Structural Funds impact.

The combination of sources of funding is used to address two types of activities:

- **Upstream activities** build the appropriate capacities to perform research. They can be capacity building in physical capital (construction or improvement of research infrastructures, purchasing equipment, (including IT equipment and connections, data storage capacities), innovation infrastructures (LivingLabs, FabLabs, Design factories, etc.) and social capital (assistance for building networks, clusters and consortia).
- **Downstream activities** are focussed towards the market and the creation of economic value. They can be applied to research, development and demonstration activities, technology transfer and adoption; technology and innovation audits to identify potential demand for RDI results; proof-of-concept funding; pilot lines for first production; and pre-commercial procurement projects. There can also be activities to support the improvement of the innovation eco-system in a territory.

2. **CONTEXT**

The Ultrasound Institute, hosted by the Kaunas University of Technology, is counting 35 years of activity. Ultrasound research activities were initiated in 1962. Since then, the total number of publications exceeds 1000 with over 150 patents. In the process of research development, new laboratories were established.

The synergy described in this case study was not initially foreseen with the 2007 ERDF funding. The main constraint to effective implementation of the Structural Fund project was related to long public procurement procedures in Lithuania, which extended the research infrastructure procurement process.

3. **IMPLEMENTATION**

Figure 1 below maps the project chronologically, the research activities of the organisation and the type of funding. It aims to give a picture of relations between projects revealing planned or unplanned dependencies (synergies) between projects and their source of funding.

Added value / complementarities created by the synergies
EU SF investment helped the Institute to build capacity needed to join FP7 projects that would not be otherwise possible. K. Baršauskas Ultrasound Research Institute purchased new equipment (ultrasonic microscope, immersion ultrasound stands, x-ray micro-tomography equipment) and as a result was able to find interested international partners and become successful in a number of new FP7 projects.

Mechanisms facilitating the synergies:
The synergy was not intended nor facilitated by policy makers.

Main problems encountered in implementing the synergies
Long public procurement procedures in Lithuania extended the research infrastructure buying process. However, it did not preclude the initiation of new FP7 projects.

Suggestions to improve the synergies
- To shorten the process of evaluation of the EU Structural Fund (SF) project applications.
- To simplify the public procurement procedures, because now they take long and the project freezes.
- The national-level EU SF projects are seen as springboard/starting platform for being successful in the Horizon 2020 projects. One interviewee highlighted the lack of interdisciplinary approach in the national R&I funding, and mentioned that the key aim of EU SF should be to prepare potential applicants for the Horizon 2020 projects.

Main motivations in implementing the synergies
KTU’s strategic objective is to become recognized for (internationally) high level research. This would enable to attract professional researchers from other countries. The university prioritizes international projects. In order to successfully participate in the international programmes, the university needs strong R&D base (both infrastructure and skilled human resources). The EU SF support for upgrading existing R&D infrastructures or constructing new R&D infrastructures is used for this purpose. Also, the Horizon 2020 projects are seen as a source of funding for high quality R&D in the overall context of scarce national level R&D funding.
Figure 2 aims to position projects according to the activities they cover; from upstream (infrastructures, equipment, research activities) to downstream related activities (innovation, knowledge transfer, access to market).

Figure 2: Diagram of the complementarities of the funds in the knowledge triangle / flow

- **2007-2013 SF project:** "Creation of national open access R&D centre in KTU"
- **FP7 projects:** “SprinkTest”, “CreepTest”, “SAFEJOINT”, “SkinDetector”
- **Capacity building (Research Infrastructures, facilities)**
- **Research (Research activity)**

4. Related Projects

Name of the SF PROJECT: “Creation of national open access R&D centre in KTU”

- **SF funding scheme:** OP for Economic Growth, measure “Increasing business productivity and improving environment for business”, instrument “Strengthening science and studies infrastructure”
- **Budget:** €36,477,882.45
- **Time frame of the SF funded project:** 2009 02 02 – 2015 03 31
- **Main objectives and type of costs covered:** The main objective of the project is to upgrade the outdated R&D base of KTU which cannot be used for modern research. The new labs and equipment will enable to perform up to date R&D activities, scientific experiments. Scientists and other researchers are able to carry out new studies of sustainable chemistry, mechatronics and related technologies and ICT, which results will be used to development of new high value-added products. Results of the project will contribute to the implementation of science business valley “Santaka” development programme. The project covers costs of upgrading/procuring new infrastructure (laboratories, equipment, etc.).

Name of the FP PROJECT: “CreepTest”

- **FP funding scheme:** Research for SMEs
- **Budget:** Project budget: €1,287,835.34; partner budget: €39,920
- **Time frame of the FP funded project:** 2013 05 01 - 2015 04 30
- **Main objectives and type of costs covered:** The main objective is to develop a prototype of inspection system for detection of early stage Type IV creep damage in
thermal power plants which use creep strength enhanced ferritic (CSEF) steels for high
temperature operation. The costs covered by the project are consumables and salaries.

Name of the FP PROJECT: “SAFEJOINT”
- **FP funding scheme:** Small or medium-scale focused research project
- **Budget:** Project budget: €4,093,335; partner budget: €474,600
- **Time frame of the FP funded project:** 2013 01 01 - 2015 12 31
 - **Main objectives and type of costs covered:** The main objective of the project is to
develop novel techniques for metal to metal and metal to composite joining and techniques
for the non-destructive inspection and evaluation of such joints. The costs covered by the
project are consumables and salaries.

Name of the FP PROJECT: “SkinDetector”
- **FP funding scheme:** Research for SMEs
- **Budget:** Project budget: €1,447,826.02; partner budget: €28,874
- **Time frame of the FP funded project:** 2012 11 01 – 2014 10 31
- **Main objectives and type of costs covered:** The main objective of the project is to
develop more accurate early-stage detection, diagnosis and monitoring that will reduce the
microvascular and macrovascular complications of diabetes mellitus. The costs covered by
the project are consumables and salaries.

Name of the FP PROJECT: “SprinkTest”
- **FP funding scheme:** Research for SMEs
- **Budget:** €1,363,414.66
- **Time frame of the FP funded project:** 2013 11 01 – 2015 10 31
- **Main objectives and type of costs covered:** The main objective of the project is to
develop a medium range ultrasonic test (MRUT) system to inspect automatic fire sprinkler
systems. The costs covered by the project are consumables and salaries.
5. ANNEX: DETAILS ON THE RELATED PROJECTS

SF funded project

Project title: “Creation of national open access R&D centre in Kaunas University of Technology”

Weblink: http://www.espara.lt/projektas?id=12466&order=&page=&pgsz=50

Beneficiary: Kaunas University of Technology

Type of institution: HEI

Budget:
- **Total Investment:** €36,477,882.45
- **EU contribution:** €31,975,704.77
- **Other contributors:** €4,502,177.68

SF/ESIF funding instrument: VP2-1.1-SMM-04-V. Strengthening of science and studies infrastructure

Time frame of the project: 2009 02 02 – 2015 03 31

Main project objectives:
The main objective of the project was to upgrade the outdated R&D base of KTU which cannot be used for newest and current research. The new labs and equipment would enable to perform up to date R&D activities, scientific experiments. Scientists and other researchers will be able to carry out new studies of sustainable chemistry, mechatronics and related technologies and ICT, which results will be used to development of new high value-added products. The project results were planned contribute to the implementation of science business valley “Santaka” development programme.

Specific goals (expected output)
Specific output related to K. Baršauskas Ultrasound Research Institute are acquisition of new equipment (ultrasonic microscope, immersion ultrasound stands, x-ray micro-tomography equipment).

Collaborative work within the project
There were no project partners.

Type of costs covered:
- research infrastructures;
- research equipment.

Main Results
Strengthened research capacity of K. Baršauskas Ultrasound Research Institute. It enables Institute to become internationally competitive, to attract more talent and funding for more international projects.

Difficulties encountered at the stage of drafting the proposal
It should be noted that K. Baršauskas Ultrasound Research Institute was not responsible for the preparation of this project’s proposal, so no difficulties can be identified by the interviewee.

Concerns regarding the evaluation:
There were no concerns regarding the procedure of evaluation.

Difficulties during the implementation of the project
Respondents emphasised that public procurement procedures took long and as a result the acquisition of new equipment was delayed.

Facilitating mechanisms during the draft proposal/ implementation

- The respondent indicated that Kaunas Technology University provided administrative support to the research team, which smoothed the implementation of the project.
- The interviewee believed that one of the key measures aimed at establishing one of the five science, business and studies centres (“valleys”) – the “Santaka” valley - are the most likely to become successful in the future. “Santaka” valley was one of the strategic objects for raising the level of research in Lithuania. Also, there was almost no competition to win the proposal funding. 33 out of 36 projects (91.7% success rate) were awarded with contracts.
- With regards to facilitating the participation, the respondent suggested: (1) to shorten the process of evaluation of EU SF project applications. (2) it would be desirable to see the full comments of all proposals evaluators. Now only the summary of comments (conclusions) from all evaluators is provided. (3) to simplify the public procurement procedures, because for the moment they take too long and the project have increased risks of “freezing”.
FP7 FUNDING: “CreepTest”

Name of the FP project: “Development of a high sensitivity ultrasonic phased array Non-Destructive Testing (NDT) method for the early detection of creep damage (Type IV cracking) in alloy steels used in high temperature, high”

Beneficiary: Kaunas University of Technology

Type of institution: HEI

Budget

Total project budget:
- Total Investment: €1,287,835.34
- EU contribution: €998,000
- Other contributors: €289,835.34

Partner budget in the project:
- Total Investment: €39,920
- EU contribution: €39,920
- Other contributors: €0

FP funding instrument
- Funding scheme: BSG-SME - Research for SMEs
- Subprogram: SME-2012-1 - Research for SMEs
- Call for proposal: FP7-SME-2012

Time frame of the project: 2013 05 01 - 2015 04 30

Main project objectives
To develop a prototype of inspection system for detection of early stage Type IV creep damage in thermal power plants which use creep strength enhanced ferritic (CSEF) steels for high temperature operation.

Specific goals (expected output)
- To develop new ultrasonic phased non-destructive evaluation (NDE) testing techniques for the detection of Type IV creep cracking.
- To determine the sensitivity of defect detection and the limits of technique/system/ultrasonic array performance
- To produce a field prototype NDE ultrasonic array system, signal processing and software for the examination of power plant steam pipe welds for creep damage.
- Quantify results to assess the extent of creep detection and categorise into (i) cavitation formation, (ii) cavitation coalescence, (iii) formation of micro-cracking and (iv) macro-cracking.
- To demonstrate the NDE systems performance on in-service, in-situ steam pipe welds and to validate the technique results against representative samples containing realistic creep defects.

Collaborative work within the project
Project partners:
- APPLIED INSPECTION LTD, United Kingdom (coordinator)
Main Results
The project is not finished yet and many activities are ongoing now. The work performed so far is:

- The scanner design to implement the technique on the steam pipe component is complete and ready for fabrication.
- The theoretical and experimental work to design the transducers is ongoing.
- The pulser-receiver instrumentation is being developed to drive the specialist transducers being designed. The software for control of the prototype (scanner and instrumentation), acquisition of data and visualisation for interpretation is being developed in parallel.
- The consortium is collecting as many specimens containing early stage creep damage as possible.
- Publication:
 - “High Sensitivity Ultrasonic NDE Method for Early Detection of Creep Damage in Alloy Steel Steam Systems in Power Plants” (Channa Nageswaran, Liudas Mažeika, Panagiotis Theodorakeas)

Difficulties encountered at the stage of proposal drafting
The interviewees did not encounter any difficulties at the stage of proposal drafting.

Concerns regarding the evaluation:
Respondents refused to comment the evaluation process.

Difficulties during the implementation of the work:
The interviewees did not encounter any difficulties during the implementation of the work, including eligible costs, high administrative workload or complicated procedures.

Facilitating mechanisms during the draft proposal/ project implementation
Respondents encountered that the financial support for FP7 application preparation costs of €1,828.46 was received from MITA.

Other push – pull factors that may affect the R&I performers in applying/ being successful in FP calls
The main motivation to participate in Horizon 2020 projects is KTU’s goal to become known for internationally recognized high level research. This would enable to attract professional researchers from other countries. Also, the Horizon 2020 projects are seen as a source of finance to fund large R&D projects.

Which were the strengths of the proposal to become successful?
The exceptional competence, research experience and initiative of researchers team in the K. Baršauskas Ultrasound Research Institute.

Suggestions to policy makers to facilitate the participation of national R&I performers in H2020
Proposals evaluation reports do not provide comments and drawbacks of proposal. The researchers would like to know the drawbacks and errors of the proposals, so they can take them into account in their following research proposals.

Advise to R&I performers willing to apply
The respondents see EU SF projects as a starting platform for research teams in order to apply for Horizon 2020 projects, which are seen as a key interest of high level research teams. Hence, they recommend using the opportunity to strengthen existing R&D capacities and skills with the help of national R&D support in order to apply for Horizon 2020 projects in the future.
FP7 FUNDING: “SAFEJOINT”

Name of the FP project: “Enhancing structural efficiency through novel dissimilar material joining techniques”

http://safejoint.net/

Beneficiary: Kaunas University of Technology

Type of institution: HEI

Budget
Total project budget:
- Total Investment: €4,093,335
- EU contribution: €3,130,477
- Other contributors: €962,858

Partner budget in the project:
- Total Investment: €474,600
- EU contribution: €351,950
- Other contributors: €122,650

FP funding instrument
- Funding scheme: CP-FP - Small or medium-scale focused research project
- Subprogram: NMP.2012.2.1-1 - Joining dissimilar materials (excluding applications specific only to healthcare)
- Call for proposal: FP7-NMP-2012-SMALL-6

Time frame of the project: 2013 01 01 - 2015 12 31

Main project objectives
- Develop novel techniques for metal to metal and metal to composite joining.
- Develop novel techniques for the non-destructive inspection and evaluation of such joints.

The Ultrasound Research Institute are involved in the development of a novel techniques for the non-destructive inspection and evaluation of such joints.

Specific goals (expected output) of Ultrasound Research Institute
- A detailed literature review;
- Investigation of NDE techniques for quality control;
- Development of NDE technique for dissimilar metal joints;
- Development of NDE techniques for quality control of metal composite joints;
- NDT testing of sample before joint integrity assessment;
- NDE procedures and guidelines for inspection at build and service health monitoring;
- NDE inspections of the demonstrator structures at build and also during and after testing.

Collaborative work within the project
Project partners:
- UNIVERSITY OF NEWCASTLE UPON TYNE, United Kingdom (coordinator)
- NATIONAL TECHNICAL UNIVERSITY OF ATHENS, Greece
- ANTHONY, PATRICK & MURTA-EXPORTACAO LDA, Portugal
- SWEREA SICOMP AB, Sweden
- SWEREA IVF AB, Sweden
- INSTITUTO TECNOLOGICO DE ARAGON, Spain
- FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V, Germany
Type of costs covered:
Consumables and salaries.

Main Results
Work package 1 has been completed. The objective of this work package was to define and characterise the nanocomposite joint interface (or interphase) and the technologies for the application of nanoparticles to create strong transition joints for both metal/metal and metal/composite joints. Other work packages are ongoing. The main expected result of the project is development of joining techniques for materials with fundamentally different physical properties that will ensure the safe and reliable load transfer load between the constituent materials.

Difficulties encountered at the stage of proposal drafting
The interviewee did not encounter any difficulties at the stage of proposal of drafting.

Concerns regarding the evaluation:
Respondent refused to comment on the evaluation process.

Difficulties during the implementation of the work:
The respondent did not indicate any difficulties during the implementation of the work, including eligible costs, administrative workload, complicated procedures, etc.

Facilitating mechanisms during the draft proposal/project implementation
The financial support for FP7 application preparation costs of €1,421.17 was received from MITA

Other push – pull factors that may affect the R&I performers in applying/being successful in FP calls
See above (“CreepTest”)

Which were the strengths of the proposal to become successful?
The exceptional competence, research experience and initiative of researchers team in the K. Baršauskas Ultrasound Research Institute.

Suggestions to policy makers to facilitate the participation of national R&I performers in H2020
See above (“CreepTest”)

Advise to R&I performers willing to apply
See above (“CreepTest”)
FP7 FUNDING: “SkinDetector”

Name of the FP project: “Application of the innovative data fusion based non-invasive approach for management of the diabetes mellitus”

Beneficiary: Kaunas University of Technology

Type of institution: HEI

Budget

Total project budget:
- Total Investment: €1,447,826.02
- EU contribution: €1,121,999.75
- Other contributors: €325,826.27

Partner budget in the project:
- Total Investment: €28,874
- EU contribution: €28,874
- Other contributors: €0

FP funding instrument
- Funding scheme: BSG-SME - Research for SMEs
- Subprogram: SME-2012-1 - Research for SMEs
- Call for proposal: FP7-SME-2012

Time frame of the project: 2012 11 01 – 2014 10 31

Main project objectives
To develop more accurate early-stage detection, diagnosis and monitoring that will reduce the microvascular and macrovascular complications of diabetes mellitus.

Specific goals (expected output) of Ultrasound Research Institute
- To estimate the parameters of ultrasonic transducers array.
- To perform an analysis and definition of the 3D beamforming algorithms, also development algorithms for data fusion of dermatoscopic (optical images), thermographic images and ultrasonic data.

Collaborative work within the project
Project partners:
- INNOVATIVE TECHNOLOGY AND SCIENCE LIMITED – INNOTECUK, United Kingdom (coordinator)
- UAB Metis Baltic, Lithuania
- BOYNEDUN LIMITED, Ireland
- DOTSOFT OLOKLIROMENES DIADIKTIOY KAI VASEON DEDOMENOM AE, Greece
- DASEL SL, Spain
- OPTOMED OY, Finland
- LIETUVOS SVEIKATOS MOKSLU UNIVERSITETAS, Lithuania
- TWI LIMITED, United Kingdom
- TECHNISCHE UNIVERSITAET DRESDEN, Germany

Type of costs covered:
Included consumables and salaries
Main Results
The projects goals were reached successfully. Other project results are:

- International Congress on Ultrasonics in Singapore, Republic of Singapore on 2nd of May 2013
- 37th International Symposium on Ultrasonic Imaging and Tissue Characterization in Arlington, Virginia USA on 11th of June 2012
- 9th International Conference of the European Technology Platform on Future Manufacturing Technologies ManuFuture2013 in Vilnius, Lithuania on 6th of October 2013
- 11th Congress of the Baltic Association of Dermatovenereologists in Kaunas, Lithuania on 17th of October 2013
- Congress of the Baltic Association of Dermatovenereologists (BADV) in Riga, Latvia on 30th of May 2014
- Thermosense: Thermal Infrared Applications XXXV conference in Baltimore, Maryland United States on 5th of May 2014
- Presentation at thermoses in Baltimore, USA in early May 2014
- Horizon2020-Health European Brokerage event in Lyon, France on 4th of July 2014
- 11th European Conference on Non-Destructive Testing (ECNDT) in Prague, Czech Republic on 6-10th of October 2014

- Publications:
 - “Development of the stable ultrasound phantoms for superficial human tissue investigation” (K. Andrėkutė, R. Raišutis).
 - “Spatially distributed focusing and post-processing of the acquired data in the case of quantitative ultrasonic imaging of diabetic ulcer” (R. Raišutis, Skaidra Valiukevičienė).
 - “Skin markers and their imaging diagnostics among diabetic patients” (Skaidra Valiukevičienė).
 - “Image processing using the Smartscope M5 for early diagnosis of human skin damage due to Type 2 diabetes mellitus” (Thomas Gailliegue, Giorgos Asfis, Channa Nageswaran; TWI bulletin article).

Difficulties encountered at the stage of proposal drafting
The interviewee did not encounter any difficulties at the stage of proposal drafting.

Concerns regarding the evaluation:
Respondent refused to comment evaluation process.

Difficulties during the implementation of the work:
The interviewees did not indicate any difficulties during the implementation of the work.

Facilitating mechanisms during the draft proposal/ project implementation
Financial support for FP7 application preparation costs of €1,829.24 was received.

Other push – pull factors that may affect the R&I performers in applying/ being successful in FP calls
See above ("CreepTest")

Which were the strengths of the proposal to become successful
The exceptional competence, research experience and initiative of researchers team in the K. Baršauskas Ultrasound Research Institute.

Suggestions to policy makers to facilitate the participation of national R＆I performers in H2020
See above ("CreepTest")

Advise to R＆I performers willing to apply
See above ("CreepTest")
FP7 FUNDING: “SprinkTest”

Name of the FP project: Medium range Ultrasonic inspection technique for detecting micro-biologically induced corrosion in automatic fire sprinkler systems

Project reference: -

Beneficiary: Kaunas University of Technology

Type of institution: HEI

Budget
Total project budget:
 Total Investment: €1,363,414.66
 EU contribution: €1,049,000
 Other contributors: €314,414.66

FP funding instrument
 - Funding scheme: BSG-SME - Research for SMEs
 - Subprogram: SME-2013-1 - Research for SMEs
 - Call for proposal: FP7-SME-2013

Time frame of the project: 2013 11 01 – 2015 10 31

Main project objectives
To develop a medium range ultrasonic test (MRUT) system to inspect automatic fire sprinkler systems.

Specific goals (expected output) of Ultrasound Research Institute
 o Develop automatic sprinkler testing method.
 o Perform numerical simulations, experiments and validations with the developed method.

Collaborative work within the project
Project partners:
 o PLANT INTEGRITY LTD, United Kingdom (coordinator)
 o WLB LIMITED, Cyprus
 o BAUGH AND WEEDON LIMITED, United Kingdom
 o TECNITEST INGENIEROS SL, Spain
 o DVC NV, Belgium
 o INNORA PROIGMENA TECHNOLOGIKA SYSTIMATA KAI YPIRESIES ANONYMI ETAIREIA, Greece
 o EUROPEAN FIRE SPRINKLER NETWORK, United Kingdom
 o TESTEX NDT LIMITED, United Kingdom

Type of costs covered:
Consumables and salaries.

Main Results
The project is not finished yet and many activities are ongoing now. The work performed so far is:
 - International conferences, workshops and lectures.
 o London 2014 Fire Sprinkler International conference. Consortium coordinator presented the purpose of the project and the fundamental technology, which were planned to be developed.

Difficulties encountered at the stage of proposal drafting
The interviewee did not encounter any difficulties at the stage of proposal drafting.

Concerns regarding the evaluation:
Respondent refused to comment evaluation process.

Difficulties during the implementation of the work:
The respondent did not indicate any difficulties during the implementation of the work.

Facilitating mechanisms during the draft proposal/ project implementation
Financial support for FP7 application preparation costs of €2,832.52 was received.

Other push – pull factors that may affect the R&I performers in applying/ being successful in FP calls
See above (“CreepTest”)

Which were the strengths of the proposal to become successful
The exceptional competence, research experience and initiative of researchers team in the K. Baršauskas Ultrasound Research Institute.

Suggestions to policy makers to facilitate the participation of national R&I performers in H2020
See above (“CreepTest”)

Advise to R&I performers willing to apply
See above (“CreepTest”)
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSEF</td>
<td>Creep strength enhanced ferritic</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FP7</td>
<td>7th Framework Programme</td>
</tr>
<tr>
<td>HEI</td>
<td>Higher education institutions</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technologies</td>
</tr>
<tr>
<td>MRUT</td>
<td>Medium range ultrasonic test</td>
</tr>
<tr>
<td>NDE</td>
<td>Non-destructive evaluation</td>
</tr>
<tr>
<td>NDT</td>
<td>Non-Destructive Testing</td>
</tr>
<tr>
<td>OP</td>
<td>Operational programme</td>
</tr>
<tr>
<td>PRO</td>
<td>Public Research Organisations</td>
</tr>
<tr>
<td>SF</td>
<td>Structural Funds</td>
</tr>
</tbody>
</table>